Thực hành 2 trang 7 SGK Toán 10 Chân trời sáng tạo tập 2
Tìm biệt thức và nghiệm của các tam thức bậc hai sau:
a) \(f\left( x \right) = 2{x^2} - 5x + 2\)
b) \(g\left( x \right) = - {x^2} + 6x - 9\)
c) \(h\left( x \right) = 4{x^2} - 4x + 9\)
Hướng dẫn giải chi tiết Thực hành 2
Phương pháp giải
Bước 1: Xác định biệt thức \(\Delta = {b^2} - 4ac\)
Bước 2: Xét dấu của \(\Delta \)
Bước 3: Tìm nghiệm
+) Nếu \(\Delta > 0 \Rightarrow {x_1} = \frac{{ - b + \sqrt \Delta }}{{2a}};{x_2} = \frac{{ - b - \sqrt \Delta }}{{2a}}\)
+) Nếu \(\Delta = 0 \Rightarrow {x_1} = {x_2} = \frac{{ - b}}{{2a}}\)
+) Nếu \(\Delta = 0\)thì tam thức bậc hai vô nghiệm
Lời giải chi tiết
a) Tam thức bậc hai \(f\left( x \right) = 2{x^2} - 5x + 2\) có \(\Delta = {\left( { - 5} \right)^2} - 4.2.2 = 9\)
\(\Delta > 0\), do đó \(f\left( x \right)\) có hai nghiệm phân biệt là
\({x_1} = \frac{{5 + \sqrt 9 }}{4} = 2\) và \({x_1} = \frac{{5 - \sqrt 9 }}{4} = \frac{1}{2}\)
b) Tam thức bậc hai \(g\left( x \right) = - {x^2} + 6x - 9\) có \(\Delta = {6^2} - 4.\left( { - 1} \right).\left( { - 9} \right) = 0\)
\(\Delta = 0\), do đó \(g\left( x \right)\)có nghiệm kép \({x_1} = {x_2} = \frac{{ - 6}}{{2.\left( { - 1} \right)}} = 3\)
c) Tam thức bậc hai \(h\left( x \right) = 4{x^2} - 4x + 9\) có \(\Delta = {\left( { - 4} \right)^2} - 4.4.9 = - 128\)
\(\Delta < 0\), do đó \(h\left( x \right)\) vô nghiệm
-- Mod Toán 10 HỌC247
-
Hãy lập bảng xét dấu các biểu thức sau: \(f(x) = (3{x^2} - 4x)(2{x^2} - x - 1)\);
bởi Co Nan 28/08/2022
Theo dõi (0) 1 Trả lời
Bài tập SGK khác
Hoạt động khám phá 1 trang 6 SGK Toán 10 Chân trời sáng tạo tập 2 - CTST
Thực hành 1 trang 7 SGK Toán 10 Chân trời sáng tạo tập 2 - CTST
Hoạt động khám phá 2 trang 8 SGK Toán 10 Chân trời sáng tạo tập 2 - CTST
Thực hành 3 trang 9 SGK Toán 10 Chân trời sáng tạo tập 2 - CTST
Vận dụng trang 9 SGK Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải bài 1 trang 9 SGK Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải bài 2 trang 9 SGK Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải bài 3 trang 10 SGK Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải bài 4 trang 10 SGK Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải bài 5 trang 10 SGK Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải bài 6 trang 10 SGK Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải bài 7 trang 10 SGK Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải bài 8 trang 10 SGK Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải bài 1 trang 8 SBT Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải bài 2 trang 9 SBT Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải bài 3 trang 9 SBT Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải bài 4 trang 9 SBT Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải bài 5 trang 9 SBT Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải bài 6 trang 9 SBT Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải bài 7 trang 10 SBT Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải bài 8 trang 10 SBT Toán 10 Chân trời sáng tạo tập 2 - CTST