Hoạt động khám phá 4 trang 40 SGK Toán 10 Chân trời sáng tạo tập 2
Trong mặt phẳng Oxy, cho hai vectơ \(\overrightarrow a = \left( {{a_1},{a_2}} \right),\overrightarrow b = \left( {{b_1},{b_2}} \right)\) và số thực k. Ta đã biết có thể biểu diễn từng vectơ \(\overrightarrow a ,\overrightarrow b \) theo hai vectơ , \(\overrightarrow j \) như sau
a) Biểu diễn từng vectơ \(\overrightarrow a + \overrightarrow b ,\overrightarrow a - \overrightarrow b ,k\overrightarrow a \) theo hai vectơ , \(\overrightarrow j \)
b) Tìm \(\overrightarrow a .\overrightarrow b \) theo tọa độ của hai vectơ \(\overrightarrow a \) và \(\overrightarrow b \)
Hướng dẫn giải chi tiết Hoạt động khám phá 4
Phương pháp giải
Cho hai vectơ \(\overrightarrow a = \left( {{a_1};{a_2}} \right),\overrightarrow b = \left( {{b_1};{b_2}} \right)\) và số thực k. Khi đó:
\(\begin{array}{l}
1)\;\;\;\overrightarrow a + \overrightarrow b = \left( {{a_1} + {b_1};{a_2} + {b_2}} \right);\\
2)\;\;\;\overrightarrow a - \overrightarrow b = \left( {{a_1} - {b_1};{a_2} - {b_2}} \right);\\
3)\;\;\;k\overrightarrow a = \left( {k{a_1};k{a_2}} \right);\\
4)\;\;\;\overrightarrow a .\overrightarrow b = {a_1}.{b_1} + {a_2}.{b_2}.
\end{array}\)
Lời giải chi tiết
a) Ta có
\(\begin{array}{*{20}{l}}
{\vec a + \vec b = \left( {{a_1} + {a_2}\vec j} \right) + \left( {{b_1} + {b_2}\vec j} \right) = \left( {{a_1} + {b_1}} \right) + \left( {{a_2} + {b_2}} \right)}\\
{\vec a - \vec b = \left( {{a_1} + {a_2}\vec j} \right) - \left( {{b_1} + {b_2}\vec j} \right) = \left( {{a_1} - {b_1}} \right) + \left( {{a_2} - {b_2}} \right)}\\
{k\vec a = k\left( {{a_1} + {a_2}\vec j} \right) = k{a_1} + k{a_2}\vec j}
\end{array}\)
b) Ta có
\(\begin{array}{l}
\vec a.\vec b = \left( {{a_1}\overrightarrow i + {a_2}\vec j} \right).\left( {{b_1}\overrightarrow i + {b_2}\vec j} \right)\\
= {a_1}{b_1}{\overrightarrow i ^2} + {a_1}{b_2}\overrightarrow i .\vec j + {a_2}{b_1}\overrightarrow i \vec j + {a_2}{b_2}{{\vec j}^2}\\
= {a_1}{b_1} + {a_2}{b_2}
\end{array}\)
Vì \({\overrightarrow i ^2} = {\left| {\overrightarrow i } \right|^2} = 1,{\overrightarrow j ^2} = {\left| {\overrightarrow j } \right|^2} = 1,\overrightarrow i \overrightarrow j = 0\)
-- Mod Toán 10 HỌC247
-
Hãy tìm các cặp số thực a và b sao cho cặp vecto sau bằng nhau: \(\overrightarrow u = \left( {2a - 1; - 3} \right)\) và \(\overrightarrow v = \left( {3;4b + 1} \right)\)
bởi Tra xanh 18/09/2022
Theo dõi (0) 1 Trả lời
Bài tập SGK khác
Thực hành 1 trang 40 SGK Toán 10 Chân trời sáng tạo tập 2 - CTST
Vận dụng 1 trang 40 SGK Toán 10 Chân trời sáng tạo tập 2 - CTST
Thực hành 2 trang 41 SGK Toán 10 Chân trời sáng tạo tập 2 - CTST
Vận dụng 2 trang 41 SGK Toán 10 Chân trời sáng tạo tập 2 - CTST
Hoạt động khám phá 5 trang 41 SGK Toán 10 Chân trời sáng tạo tập 2 - CTST
Thực hành 3 trang 42 SGK Toán 10 Chân trời sáng tạo tập 2 - CTST
Hoạt động khám phá 6 trang 42 SGK Toán 10 Chân trời sáng tạo tập 2 - CTST
Thực hành 4 trang 43 SGK Toán 10 Chân trời sáng tạo tập 2 - CTST
Hoạt động khám phá 7 trang 43 SGK Toán 10 Chân trời sáng tạo tập 2 - CTST
Thực hành 5 trang 44 SGK Toán 10 Chân trời sáng tạo tập 2 - CTST
Vận dụng 3 trang 44 SGK Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải bài 1 trang 44 SGK Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải bài 2 trang 45 SGK Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải bài 3 trang 45 SGK Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải bài 4 trang 45 SGK Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải bài 5 trang 45 SGK Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải bài 6 trang 45 SGK Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải bài 7 trang 45 SGK Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải bài 8 trang 45 SGK Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải bài 9 trang 45 SGK Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải bài 10 trang 45 SGK Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải bài 11 trang 45 SGK Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải Bài 1 trang 58 SBT Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải Bài 2 trang 58 SBT Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải Bài 3 trang 59 SBT Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải Bài 4 trang 59 SBT Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải Bài 5 trang 59 SBT Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải Bài 6 trang 59 SBT Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải Bài 7 trang 59 SBT Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải Bài 8 trang 59 SBT Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải Bài 9 trang 59 SBT Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải Bài 10 trang 59 SBT Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải Bài 11 trang 60 SBT Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải Bài 12 trang 60 SBT Toán 10 Chân trời sáng tạo tập 2 - CTST