Giải Bài 2 trang 58 SBT Toán 10 Chân trời sáng tạo tập 2
Cho ba vectơ \(\overrightarrow m = \left( {1;1} \right),\overrightarrow n = \left( {2;2} \right),\overrightarrow p = \left( { - 1; - 1} \right)\).
Tìm tọa độ của các vectơ
a) \(\overrightarrow m + 2\overrightarrow n - 3\overrightarrow p \);
b) \(\left( {\overrightarrow n .\overrightarrow p } \right)\overrightarrow m \)
Hướng dẫn giải chi tiết Bài 2
Phương pháp giải
Cho hai vectơ \(\overrightarrow a = \left( {{a_1},{a_2}} \right),\overrightarrow b = \left( {{b_1},{b_2}} \right)\), ta có:
+ \(\overrightarrow a \pm \overrightarrow b = \left( {{a_1} \pm {b_1},{a_2} \pm {b_2}} \right)\)
+ \(k\overrightarrow a = \left( {k{a_1},k{a_2}} \right)\)
+ \(\overrightarrow a .\overrightarrow b = {a_1}{b_1} + {a_2}{b_2}\)
Lời giải chi tiết
a) \(2\overrightarrow n = \left( {4;4} \right),3\overrightarrow p = \left( { - 3; - 3} \right)\)
\( \Rightarrow \overrightarrow m + 2\overrightarrow n - 3\overrightarrow p = \left( {1;1} \right) + \left( {4;4} \right) - \left( { - 3; - 3} \right) = \left( {8;8} \right)\)
b) \(\overrightarrow n .\overrightarrow p = 2\left( { - 1} \right) + 2\left( { - 1} \right) = - 4 \Rightarrow \left( {\overrightarrow n .\overrightarrow p } \right)\overrightarrow m = - 4\left( {1;1} \right) = \left( { - 4; - 4} \right)\)
-- Mod Toán 10 HỌC247
Chưa có câu hỏi nào. Em hãy trở thành người đầu tiên đặt câu hỏi.
Bài tập SGK khác
Giải bài 11 trang 45 SGK Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải Bài 1 trang 58 SBT Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải Bài 3 trang 59 SBT Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải Bài 4 trang 59 SBT Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải Bài 5 trang 59 SBT Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải Bài 6 trang 59 SBT Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải Bài 7 trang 59 SBT Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải Bài 8 trang 59 SBT Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải Bài 9 trang 59 SBT Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải Bài 10 trang 59 SBT Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải Bài 11 trang 60 SBT Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải Bài 12 trang 60 SBT Toán 10 Chân trời sáng tạo tập 2 - CTST