Giải bài 6 trang 45 SGK Toán 10 Chân trời sáng tạo tập 2
Cho ba điểm \(A(2;2),B(3;5),C(5;5)\)
a) Tìm tọa độ điểm D sao cho ABCD là một hình bình hành
b) Tìm tọa độ giao điểm hai đường chéo của hình bình hành ABCD
c) Giải tam giác ABC
Hướng dẫn giải chi tiết Bài 6
Phương pháp giải
a) Bước 1: Xác định tọa độ vectơ \(\overrightarrow {AB} \), \(\overrightarrow {DC} \)
Bước 2: Áp dụng quy tắc hình bình hành \(\overrightarrow {AB} \)= \(\overrightarrow {DC} \) (hai vectơ bằng nhau thì tọa độ tương ứng của chúng bằng nhau)
b) Áp dụng tính chất trung điểm
c) Sử dụng ứng dụng biểu thức tọa độ của các phép toán vectơ
Lời giải chi tiết
a) Gọi tọa độ của điểm D là \(\left( {x;y} \right)\) ta có: \(\overrightarrow {AB} = \left( {1;3} \right)\), \(\overrightarrow {DC} = \left( {5 - x;5 - y} \right)\)
Để ABCD là hình bình hành thì \(\overrightarrow {AB} \)= \(\overrightarrow {DC} \)
Suy ra \(\left\{ \begin{array}{l}5 - x = 1\\5 - y = 3\end{array} \right. \Rightarrow \left\{ \begin{array}{l}x = 4\\y = 2\end{array} \right.\)
Vậy để ABCD là hình bình hành thì tọa độ điểm D là \(D\left( {4;2} \right)\)
b) Gọi M là giao điểm của hai đường chéo, suy ra M là trung điểm của AC
Suy ra: \({x_M} = \frac{{{x_A} + {x_C}}}{2} = \frac{{2 + 5}}{2} = \frac{7}{2};{y_M} = \frac{{{y_A} + {y_C}}}{2} = \frac{{2 + 5}}{2} = \frac{7}{2}\)
Vậy tọa đọ giao điểm của hai đường chéo hình bình hành ABCD là \(M\left( {\frac{7}{2};\frac{7}{2}} \right)\)
c) Ta có: \(\overrightarrow {AB} = \left( {1;3} \right),\overrightarrow {AC} = \left( {3;3} \right),\overrightarrow {BC} = \left( {2;0} \right)\)
Suy ra: \(AB = \left| {\overrightarrow {AB} } \right| = \sqrt {{1^2} + {3^2}} = \sqrt {10} ,AC = \left| {\overrightarrow {AC} } \right| = \sqrt {{3^2} + {3^2}} = 3\sqrt 2 \)
\(BC = \left| {\overrightarrow {BC} } \right| = \sqrt {{2^2} + {0^2}} = 2\)
\(\begin{array}{l}\cos A = \cos \left( {\overrightarrow {AB} ,\overrightarrow {AC} } \right) = \frac{{\overrightarrow {AB} .\overrightarrow {AC} }}{{AB.AC}} = \frac{{1.3 + 3.3}}{{\sqrt {10} .3\sqrt 2 }} = \frac{{2\sqrt 5 }}{5} \Rightarrow \widehat A \approx 26^\circ 33'\\\cos B = \cos \left( {\overrightarrow {BA} ,\overrightarrow {BC} } \right) = \frac{{\overrightarrow {BA} .\overrightarrow {BC} }}{{BA.BC}} = \frac{{\left( { - 1} \right).2 + \left( { - 3} \right)0}}{{\sqrt {10} .2}} = - \frac{{\sqrt {10} }}{{10}} \Rightarrow \widehat B = 108^\circ 26'\\\widehat C = 180^\circ - \widehat A - \widehat B = 180^\circ - 26^\circ 33' - 108^\circ 26' = 45^\circ 1'\end{array}\)
-- Mod Toán 10 HỌC247
Chưa có câu hỏi nào. Em hãy trở thành người đầu tiên đặt câu hỏi.
Bài tập SGK khác
Giải bài 4 trang 45 SGK Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải bài 5 trang 45 SGK Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải bài 7 trang 45 SGK Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải bài 8 trang 45 SGK Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải bài 9 trang 45 SGK Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải bài 10 trang 45 SGK Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải bài 11 trang 45 SGK Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải Bài 1 trang 58 SBT Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải Bài 2 trang 58 SBT Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải Bài 3 trang 59 SBT Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải Bài 4 trang 59 SBT Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải Bài 5 trang 59 SBT Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải Bài 6 trang 59 SBT Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải Bài 7 trang 59 SBT Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải Bài 8 trang 59 SBT Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải Bài 9 trang 59 SBT Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải Bài 10 trang 59 SBT Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải Bài 11 trang 60 SBT Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải Bài 12 trang 60 SBT Toán 10 Chân trời sáng tạo tập 2 - CTST