YOMEDIA
NONE

Giải bài 6 trang 45 SGK Toán 10 Chân trời sáng tạo tập 2 - CTST

Giải bài 6 trang 45 SGK Toán 10 Chân trời sáng tạo tập 2

Cho ba điểm \(A(2;2),B(3;5),C(5;5)\)

a) Tìm tọa độ điểm D sao cho ABCD là một hình bình hành

b) Tìm tọa độ giao điểm hai đường chéo của hình bình hành ABCD

c) Giải tam giác ABC

ATNETWORK

Hướng dẫn giải chi tiết Bài 6

Phương pháp giải

a) Bước 1: Xác định tọa độ vectơ \(\overrightarrow {AB} \), \(\overrightarrow {DC} \)

Bước 2: Áp dụng quy tắc hình bình hành \(\overrightarrow {AB} \)= \(\overrightarrow {DC} \) (hai vectơ bằng nhau thì tọa độ tương ứng của chúng bằng nhau)

b) Áp dụng tính chất trung điểm

c) Sử dụng ứng dụng biểu thức tọa độ của các phép toán vectơ

Lời giải chi tiết

a) Gọi tọa độ của điểm D là \(\left( {x;y} \right)\) ta có:  \(\overrightarrow {AB}  = \left( {1;3} \right)\), \(\overrightarrow {DC}  = \left( {5 - x;5 - y} \right)\)

Để ABCD là hình bình hành thì \(\overrightarrow {AB} \)= \(\overrightarrow {DC} \)

Suy ra \(\left\{ \begin{array}{l}5 - x = 1\\5 - y = 3\end{array} \right. \Rightarrow \left\{ \begin{array}{l}x = 4\\y = 2\end{array} \right.\)

Vậy để ABCD là hình bình hành thì tọa độ điểm D là \(D\left( {4;2} \right)\)

b) Gọi M  là giao điểm của hai đường chéo, suy ra M là trung điểm của AC

Suy ra: \({x_M} = \frac{{{x_A} + {x_C}}}{2} = \frac{{2 + 5}}{2} = \frac{7}{2};{y_M} = \frac{{{y_A} + {y_C}}}{2} = \frac{{2 + 5}}{2} = \frac{7}{2}\)

Vậy tọa đọ giao điểm của hai đường chéo hình bình hành ABCD  là \(M\left( {\frac{7}{2};\frac{7}{2}} \right)\)

c) Ta có: \(\overrightarrow {AB}  = \left( {1;3} \right),\overrightarrow {AC}  = \left( {3;3} \right),\overrightarrow {BC}  = \left( {2;0} \right)\)

Suy ra: \(AB = \left| {\overrightarrow {AB} } \right| = \sqrt {{1^2} + {3^2}}  = \sqrt {10} ,AC = \left| {\overrightarrow {AC} } \right| = \sqrt {{3^2} + {3^2}}  = 3\sqrt 2 \)

\(BC = \left| {\overrightarrow {BC} } \right| = \sqrt {{2^2} + {0^2}}  = 2\)

\(\begin{array}{l}\cos A = \cos \left( {\overrightarrow {AB} ,\overrightarrow {AC} } \right) = \frac{{\overrightarrow {AB} .\overrightarrow {AC} }}{{AB.AC}} = \frac{{1.3 + 3.3}}{{\sqrt {10} .3\sqrt 2 }} = \frac{{2\sqrt 5 }}{5} \Rightarrow \widehat A \approx 26^\circ 33'\\\cos B = \cos \left( {\overrightarrow {BA} ,\overrightarrow {BC} } \right) = \frac{{\overrightarrow {BA} .\overrightarrow {BC} }}{{BA.BC}} = \frac{{\left( { - 1} \right).2 + \left( { - 3} \right)0}}{{\sqrt {10} .2}} =  - \frac{{\sqrt {10} }}{{10}} \Rightarrow \widehat B = 108^\circ 26'\\\widehat C = 180^\circ  - \widehat A - \widehat B = 180^\circ  - 26^\circ 33' - 108^\circ 26' = 45^\circ 1'\end{array}\)

-- Mod Toán 10 HỌC247

Nếu bạn thấy hướng dẫn giải Giải bài 6 trang 45 SGK Toán 10 Chân trời sáng tạo tập 2 - CTST HAY thì click chia sẻ 
YOMEDIA

Chưa có câu hỏi nào. Em hãy trở thành người đầu tiên đặt câu hỏi.

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON