Giải bài 4.14 trang 50 SGK Toán 10 Kết nối tri thức tập 1
Cho tam giác ABC
a) Hãy xác định điểm M để \(\overrightarrow {MA} + \overrightarrow {MB} + 2\overrightarrow {MC} = \overrightarrow 0 \)
b) Chứng minh rằng với mọi điểm O, ta có \(\overrightarrow {OA} + \overrightarrow {OB} + 2\overrightarrow {OC} = 4\overrightarrow {OM} \)
Hướng dẫn giải chi tiết
Phương pháp giải
Với ba điểm A, B, C bất kì ta luôn có: \(\overrightarrow {AB} + \overrightarrow {BC} = \overrightarrow {AC} \)
Hướng dẫn giải
a) Ta có: \(\overrightarrow {MA} + \overrightarrow {MB} + 2\overrightarrow {MC} = \overrightarrow 0 \Leftrightarrow \overrightarrow {MA} + \left( {\overrightarrow {MA} + \overrightarrow {AB} } \right) + 2\left( {\overrightarrow {MA} + \overrightarrow {AC} } \right) = \overrightarrow 0 \)
\(\begin{array}{l} \Leftrightarrow \overrightarrow {MA} + \left( {\overrightarrow {MA} + \overrightarrow {AB} } \right) + 2\left( {\overrightarrow {MA} + \overrightarrow {AC} } \right) = \overrightarrow 0 \\ \Leftrightarrow 4\overrightarrow {MA} + \overrightarrow {AB} + 2\overrightarrow {AC} = \overrightarrow 0 \\ \Leftrightarrow 4\overrightarrow {AM} = \overrightarrow {AB} + 2\overrightarrow {AC} \\ \Leftrightarrow \overrightarrow {AM} = \frac{1}{4}\overrightarrow {AB} + \frac{1}{2}\overrightarrow {AC} \end{array}\)
Trên cạnh AB, AC lấy điểm D, E sao cho \(AD = \frac{1}{4}AB;\;\,AE = \frac{1}{2}AC\)
Khi đó \(\overrightarrow {AM} = \overrightarrow {AD} + \overrightarrow {AE} \) hay M là đỉnh thứ tư của hình bình hành AEMD.
-- Mod Toán 10 HỌC247
Chưa có câu hỏi nào. Em hãy trở thành người đầu tiên đặt câu hỏi.
Bài tập SGK khác
Giải bài 4.12 trang 50 SGK Toán 10 Kết nối tri thức tập 1 - KNTT
Giải bài 4.13 trang 50 SGK Toán 10 Kết nối tri thức tập 1 - KNTT
Giải bài 4.15 trang 59 SGK Toán 10 Kết nối tri thức tập 1 - KNTT
Giải bài 4.13 trang 54 SBT Toán 10 Kết nối tri thức tập 1 - KNTT
Giải bài 4.14 trang 54 SBT Toán 10 Kết nối tri thức tập 1 - KNTT
Giải bài 4.15 trang 54 SBT Toán 10 Kết nối tri thức tập 1 - KNTT
Giải bài 4.16 trang 54 SBT Toán 10 Kết nối tri thức tập 1 - KNTT
Giải bài 4.17 trang 54 SBT Toán 10 Kết nối tri thức tập 1 - KNTT
Giải bài 4.18 trang 54 SBT Toán 10 Kết nối tri thức tập 1 - KNTT
Giải bài 4.19 trang 54 SBT Toán 10 Kết nối tri thức tập 1 - KNTT
Giải bài 4.20 trang 55 SBT Toán 10 Kết nối tri thức tập 1 - KNTT
Giải bài 4.21 trang 55 SBT Toán 10 Kết nối tri thức tập 1 - KNTT