YOMEDIA
NONE

Giải bài 4.15 trang 54 SBT Toán 10 Kết nối tri thức tập 1 - KNTT

Giải bài 4.15 trang 54 SBT Toán 10 Kết nối tri thức tập 1

Cho tam giác \(ABC\) có trực tâm \(H,\) trọng tâm \(G\) và tâm đường tròn ngoại tiếp \(O.\)

a) Gọi \(M\) là trung điểm của \(BC.\) Chứng minh rằng \(\overrightarrow {AH}  = 2\overrightarrow {OM} .\)

b) Chứng minh rằng \(\overrightarrow {OA}  + \overrightarrow {OB}  + \overrightarrow {OC}  = \overrightarrow {OH} .\)

c) Chứng minh rằng ba điểm \(G,\,\,H,\,\,O\) cùng thuộc một đường thẳng.

ATNETWORK

Hướng dẫn giải chi tiết Bài 1.15

Phương pháp giải

- Chứng minh tứ giác \(ABHC\) là hình bình hành

-  Chứng minh \(MO\) là đường trung bình của \(\Delta AA'H\)

-  Chứng minh \(\overrightarrow {OB}  + \overrightarrow {OC}  = 2\overrightarrow {OM} \) từ đó rút ra kết luận \(\overrightarrow {OA}  + \overrightarrow {OB}  + \overrightarrow {OC}  = \overrightarrow {OH} .\)

-  Chứng minh \(\overrightarrow {OA}  + \overrightarrow {OB}  + \overrightarrow {OC}  = 3\overrightarrow {OG} .\)

-  Chứng minh \(\overrightarrow {OH} \) và \(\overrightarrow {OG} \) cùng phương

Lời giải chi tiết

a)  Xét \((O)\) có: \(\widehat {ABA'} = \widehat {ACA'} = {90^ \circ }\) (góc nội tiếp chắn nửa đường tròn)

\( \Rightarrow A'C \bot AC\) và \(A'B \bot AB\)       (1)

Ta có: \(H\) là trực tâm của tam giác \(ABC.\)

\( \Rightarrow BH \bot AC\) và \(CH \bot AB\)                  (2)

Từ (1) và (2) \( \Rightarrow \) \(BH\)//\(A'C\) và \(A'B\)//\(CH.\)

Xét tứ giác \(ABHC\) có: \(BH\)//\(A'C\) và \(A'B\)//\(CH\)

\( \Rightarrow \) tứ giác \(ABHC\) là hình bình hành (dấu hiệu nhận biết)

\( \Rightarrow \overrightarrow {BH}  = \overrightarrow {A'C} \)

Ta có: tứ giác \(ABHC\) là hình bình hành

nên \(M\) là trung điểm của \(A'H\)

Xét \(\Delta AA'H\) có: \(M\) là trung điểm của \(A'H\)

\(O\) là trung điểm của \(AA'\)

\( \Rightarrow \) \(MO\) là đường trung bình của \(\Delta AA'H\)

\( \Rightarrow \) \(MO\)//\(AH\) và \(2MO = AH\)

\( \Rightarrow \) hai vectơ \(\overrightarrow {MO} ,\,\,\overrightarrow {AH} \) cùng hướng và \(2\overrightarrow {OM}  = \overrightarrow {AH} .\)

b) Ta có:

\(\overrightarrow {OB}  + \overrightarrow {OC}  = \left( {\overrightarrow {OM}  + \overrightarrow {MB} } \right) + \left( {\overrightarrow {OM}  + \overrightarrow {MC} } \right) = 2\overrightarrow {OM}  + \left( {\overrightarrow {MB}  + \overrightarrow {MC} } \right) = 2\overrightarrow {OM} \)

Ta có: \(\overrightarrow {OA}  + \overrightarrow {OB}  + \overrightarrow {OC}  = \overrightarrow {OA}  + 2\overrightarrow {OM}  = \overrightarrow {OA}  + \overrightarrow {AH}  = \overrightarrow {OH} \)     (3)

c) Ta có: \(G\) là trọng tâm của \(\Delta ABC\)

nên \(\overrightarrow {OA}  + \overrightarrow {OB}  + \overrightarrow {OC}  = 3\overrightarrow {OG} .\)        (4) 

Từ (3) và (4) \( \Rightarrow \overrightarrow {OH}  = 3\overrightarrow {OG} \)

\( \Rightarrow \overrightarrow {OH} \) và \(\overrightarrow {OG} \) cùng phương

hay ba điểm \(G,\,\,H,\,\,O\) cùng thuộc một đường thẳng.

-- Mod Toán 10 HỌC247

Nếu bạn thấy hướng dẫn giải Giải bài 4.15 trang 54 SBT Toán 10 Kết nối tri thức tập 1 - KNTT HAY thì click chia sẻ 
YOMEDIA

Chưa có câu hỏi nào. Em hãy trở thành người đầu tiên đặt câu hỏi.

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON