Giải bài 4.15 trang 54 SBT Toán 10 Kết nối tri thức tập 1
Cho tam giác \(ABC\) có trực tâm \(H,\) trọng tâm \(G\) và tâm đường tròn ngoại tiếp \(O.\)
a) Gọi \(M\) là trung điểm của \(BC.\) Chứng minh rằng \(\overrightarrow {AH} = 2\overrightarrow {OM} .\)
b) Chứng minh rằng \(\overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} = \overrightarrow {OH} .\)
c) Chứng minh rằng ba điểm \(G,\,\,H,\,\,O\) cùng thuộc một đường thẳng.
Hướng dẫn giải chi tiết Bài 1.15
Phương pháp giải
- Chứng minh tứ giác \(ABHC\) là hình bình hành
- Chứng minh \(MO\) là đường trung bình của \(\Delta AA'H\)
- Chứng minh \(\overrightarrow {OB} + \overrightarrow {OC} = 2\overrightarrow {OM} \) từ đó rút ra kết luận \(\overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} = \overrightarrow {OH} .\)
- Chứng minh \(\overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} = 3\overrightarrow {OG} .\)
- Chứng minh \(\overrightarrow {OH} \) và \(\overrightarrow {OG} \) cùng phương
Lời giải chi tiết
a) Xét \((O)\) có: \(\widehat {ABA'} = \widehat {ACA'} = {90^ \circ }\) (góc nội tiếp chắn nửa đường tròn)
\( \Rightarrow A'C \bot AC\) và \(A'B \bot AB\) (1)
Ta có: \(H\) là trực tâm của tam giác \(ABC.\)
\( \Rightarrow BH \bot AC\) và \(CH \bot AB\) (2)
Từ (1) và (2) \( \Rightarrow \) \(BH\)//\(A'C\) và \(A'B\)//\(CH.\)
Xét tứ giác \(ABHC\) có: \(BH\)//\(A'C\) và \(A'B\)//\(CH\)
\( \Rightarrow \) tứ giác \(ABHC\) là hình bình hành (dấu hiệu nhận biết)
\( \Rightarrow \overrightarrow {BH} = \overrightarrow {A'C} \)
Ta có: tứ giác \(ABHC\) là hình bình hành
nên \(M\) là trung điểm của \(A'H\)
Xét \(\Delta AA'H\) có: \(M\) là trung điểm của \(A'H\)
\(O\) là trung điểm của \(AA'\)
\( \Rightarrow \) \(MO\) là đường trung bình của \(\Delta AA'H\)
\( \Rightarrow \) \(MO\)//\(AH\) và \(2MO = AH\)
\( \Rightarrow \) hai vectơ \(\overrightarrow {MO} ,\,\,\overrightarrow {AH} \) cùng hướng và \(2\overrightarrow {OM} = \overrightarrow {AH} .\)
b) Ta có:
\(\overrightarrow {OB} + \overrightarrow {OC} = \left( {\overrightarrow {OM} + \overrightarrow {MB} } \right) + \left( {\overrightarrow {OM} + \overrightarrow {MC} } \right) = 2\overrightarrow {OM} + \left( {\overrightarrow {MB} + \overrightarrow {MC} } \right) = 2\overrightarrow {OM} \)
Ta có: \(\overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} = \overrightarrow {OA} + 2\overrightarrow {OM} = \overrightarrow {OA} + \overrightarrow {AH} = \overrightarrow {OH} \) (3)
c) Ta có: \(G\) là trọng tâm của \(\Delta ABC\)
nên \(\overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} = 3\overrightarrow {OG} .\) (4)
Từ (3) và (4) \( \Rightarrow \overrightarrow {OH} = 3\overrightarrow {OG} \)
\( \Rightarrow \overrightarrow {OH} \) và \(\overrightarrow {OG} \) cùng phương
hay ba điểm \(G,\,\,H,\,\,O\) cùng thuộc một đường thẳng.
-- Mod Toán 10 HỌC247
Chưa có câu hỏi nào. Em hãy trở thành người đầu tiên đặt câu hỏi.
Bài tập SGK khác
Giải bài 4.13 trang 54 SBT Toán 10 Kết nối tri thức tập 1 - KNTT
Giải bài 4.14 trang 54 SBT Toán 10 Kết nối tri thức tập 1 - KNTT
Giải bài 4.16 trang 54 SBT Toán 10 Kết nối tri thức tập 1 - KNTT
Giải bài 4.17 trang 54 SBT Toán 10 Kết nối tri thức tập 1 - KNTT
Giải bài 4.18 trang 54 SBT Toán 10 Kết nối tri thức tập 1 - KNTT
Giải bài 4.19 trang 54 SBT Toán 10 Kết nối tri thức tập 1 - KNTT
Giải bài 4.20 trang 55 SBT Toán 10 Kết nối tri thức tập 1 - KNTT
Giải bài 4.21 trang 55 SBT Toán 10 Kết nối tri thức tập 1 - KNTT