Giải bài 3.25 trang 41 SBT Toán 10 Kết nối tri thức tập 1
Cho \(\cos \alpha = \frac{1}{4}.\) Giá trị của \(P = \frac{{\tan \alpha + 2\cot \alpha }}{{2\tan \alpha + 3\cot \alpha }}\) là:
A. \( - \frac{{17}}{{33}}.\)
B. \(\frac{{17}}{{33}}.\)
C. \(\frac{1}{2}.\)
D. \(\frac{{16}}{{33}}.\)
Hướng dẫn giải chi tiết Bài 3.25
Phương pháp giải
- Tính \({\tan ^2}\alpha \)
- Biến đổi \(P = \frac{{\tan \alpha + 2\cot \alpha }}{{2\tan \alpha + 3\cot \alpha }} = \frac{{{{\tan }^2}\alpha + 2}}{{2{{\tan }^2}\alpha + 3}}\)
Lời giải chi tiết
Ta có: \(1 + {\tan ^2}\alpha = \frac{1}{{{{\cos }^2}\alpha }}\,\, \Rightarrow {\tan ^2}\alpha = \frac{1}{{{{\cos }^2}\alpha }} - 1 = 15.\)
Ta có: \(P = \frac{{\tan \alpha + 2\cot \alpha }}{{2\tan \alpha + 3\cot \alpha }} = \frac{{\frac{{\tan \alpha }}{{\cot \alpha }} + 2}}{{\frac{{2\tan \alpha }}{{\cot \alpha }} + 3}} = \frac{{{{\tan }^2}\alpha + 2}}{{2{{\tan }^2}\alpha + 3}} = \frac{{15 + 2}}{{2.15 + 3}} = \frac{{17}}{{33}}.\)
Chọn B.
-- Mod Toán 10 HỌC247
-
Hãy chứng minh đồng nhất thức sau: \(\displaystyle {{1 - \cos x + \cos 2x} \over {\sin 2x - {\mathop{\rm s}\nolimits} {\rm{in x}}}} = \cot x\)
bởi Tuyet Anh 30/08/2022
Theo dõi (0) 1 Trả lời
Bài tập SGK khác
Giải bài 3.23 trang 40 SBT Toán 10 Kết nối tri thức tập 1 - KNTT
Giải bài 3.24 trang 41 SBT Toán 10 Kết nối tri thức tập 1 - KNTT
Giải bài 3.26 trang 41 SBT Toán 10 Kết nối tri thức tập 1 - KNTT
Giải bài 3.27 trang 41 SBT Toán 10 Kết nối tri thức tập 1 - KNTT
Giải bài 3.28 trang 41 SBT Toán 10 Kết nối tri thức tập 1 - KNTT
Giải bài 3.29 trang 41 SBT Toán 10 Kết nối tri thức tập 1 - KNTT
Giải bài 3.30 trang 42 SBT Toán 10 Kết nối tri thức tập 1 - KNTT
Giải bài 3.31 trang 42 SBT Toán 10 Kết nối tri thức tập 1 - KNTT
Giải bài 3.32 trang 42 SBT Toán 10 Kết nối tri thức tập 1 - KNTT
Giải bài 3.33 trang 42 SBT Toán 10 Kết nối tri thức tập 1 - KNTT
Giải bài 3.34 trang 42 SBT Toán 10 Kết nối tri thức tập 1 - KNTT
Giải bài 3.35 trang 42 SBT Toán 10 Kết nối tri thức tập 1 - KNTT
Giải bài 3.36 trang 43 SBT Toán 10 Kết nối tri thức tập 1 - KNTT
Giải bài 3.37 trang 43 SBT Toán 10 Kết nối tri thức tập 1 - KNTT
Giải bài 3.38 trang 43 SBT Toán 10 Kết nối tri thức tập 1 - KNTT
Giải bài 3.39 trang 43 SBT Toán 10 Kết nối tri thức tập 1 - KNTT
Giải bài 3.40 trang 43 SBT Toán 10 Kết nối tri thức tập 1 - KNTT
Giải bài 3.41 trang 44 SBT Toán 10 Kết nối tri thức tập 1 - KNTT
Giải bài 3.42 trang 44 SBT Toán 10 Kết nối tri thức tập 1 - KNTT
Giải bài 3.43 trang 44 SBT Toán 10 Kết nối tri thức tập 1 - KNTT
Giải bài 3.44 trang 44 SBT Toán 10 Kết nối tri thức tập 1 - KNTT
Giải bài 3.45 trang 44 SBT Toán 10 Kết nối tri thức tập 1 - KNTT
Giải bài 3.46 trang 44 SBT Toán 10 Kết nối tri thức tập 1 - KNTT
Giải bài 3.47 trang 44 SBT Toán 10 Kết nối tri thức tập 1 - KNTT