Giải bài 3.43 trang 44 SBT Toán 10 Kết nối tri thức tập 1
Cho tam giác \(ABC\) có \(\widehat B = {45^ \circ },\,\,\widehat C = {15^ \circ },\,\,b = \sqrt 2 .\) Tính \(a,\,\,{h_a}.\)
Hướng dẫn giải chi tiết Bài 3.43
Phương pháp giải
- Tính \(\widehat A\)
- Áp dụng định lý sin để tính \(a\): \(\frac{a}{{\sin A}} = \frac{b}{{\sin B}}.\)
- Tính diện tích \(\Delta ABC\): \(S = \frac{1}{2}ab\sin C\)
- Tính độ dài đường cao \({h_a}\): \(S = \frac{1}{2}a.{h_a}\)
Lời giải chi tiết
Xét \(\Delta ABC\) có: \(\widehat A = {180^ \circ } - \widehat B - \widehat C = {180^ \circ } - {45^ \circ } - {15^ \circ } = {120^ \circ }.\)
Áp dụng định lý sin, ta có:
\(\frac{a}{{\sin A}} = \frac{b}{{\sin B}}\,\, \Leftrightarrow \,\,\frac{a}{{\sin {{120}^ \circ }}} = \frac{{\sqrt 2 }}{{\sin {{45}^ \circ }}}\,\, \Leftrightarrow a = \frac{{\sqrt 2 .\sin {{120}^ \circ }}}{{\sin {{45}^ \circ }}} = \sqrt 3 .\)
Diện tích \(\Delta ABC\) là: \(S = \frac{1}{2}ab\sin C = \frac{1}{2}.\sqrt 3 .\sqrt 2 .\sin {15^ \circ } = \frac{{3 - \sqrt 3 }}{4}.\)
Độ dài đường cao hạ từ đỉnh A là: \({h_a} = \frac{{2S}}{a} = \frac{{2.\frac{{3 - \sqrt 3 }}{4}}}{{\sqrt 3 }} = \frac{{\sqrt 3 - 1}}{2}.\)
-- Mod Toán 10 HỌC247
Chưa có câu hỏi nào. Em hãy trở thành người đầu tiên đặt câu hỏi.
Bài tập SGK khác
Giải bài 3.41 trang 44 SBT Toán 10 Kết nối tri thức tập 1 - KNTT
Giải bài 3.42 trang 44 SBT Toán 10 Kết nối tri thức tập 1 - KNTT
Giải bài 3.44 trang 44 SBT Toán 10 Kết nối tri thức tập 1 - KNTT
Giải bài 3.45 trang 44 SBT Toán 10 Kết nối tri thức tập 1 - KNTT
Giải bài 3.46 trang 44 SBT Toán 10 Kết nối tri thức tập 1 - KNTT
Giải bài 3.47 trang 44 SBT Toán 10 Kết nối tri thức tập 1 - KNTT