YOMEDIA
NONE

Tìm m để phương trình x^4-(3m+2)x^2+12m-8=0 có 4 nghiệm

x4-(3m+2)x2+12m-8=0

tìm m để pt có 4 nghiệm pb tmx1<x2<x3<x4

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • để phương trình có 4 nghiệm phân biệt thì phương trình : \(t^2-\left(3m+2\right)t+12m-8\) có 2 nghiệm dương phân biệt (\(t=x^2\))

    \(\Leftrightarrow\left\{{}\begin{matrix}\Delta>0\\S>0\\P>0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\left(3m+2\right)^2-4\left(12m-8\right)>0\\3m+2>0\\12m-8>0\end{matrix}\right.\)

    \(\Leftrightarrow\left\{{}\begin{matrix}9m^2-36m+36>0\\3m+2>0\\12m-8>0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m\ne2\\m>\dfrac{-2}{3}\\m>\dfrac{8}{12}\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m>\dfrac{2}{3}\\m\ne2\end{matrix}\right.\)

    phương trình mà có 4 nghiệm phân biệt thì điều \(x_1< x_2< x_3< x_4\)

    là điều dỉ nhiên

    vậy \(m\ge\dfrac{2}{3};m\ne2\)

      bởi Việt Việt 16/01/2019
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON