YOMEDIA
NONE

Tìm giá trị lớn nhất của x^3 + y^3 + 3(x^2 + y^2) + 4(x + y) + 4 = 0

a. Cho x3 + y3 + 3(x2 + y2) + 4(x + y) + 4 = 0 và xy > 0

Tìm giá trị lớn nhất của Đề thi học sinh giỏi lớp 9 cấp Huyện, phòng GD-ĐT Đức Thọ

b. Với a, b, c là các số thực dương. Chứng minh rằng:

Đề thi học sinh giỏi lớp 9 cấp Huyện, phòng GD-ĐT Đức Thọ

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • Áp dụng Cauchy-Schwarz dạng Engel, ta có

    \(VT=\dfrac{a^6}{a^3+a^2b+b^2a}+\dfrac{b^6}{b^3+b^2c+c^2b}+\dfrac{c^6}{c^3+c^2a+ca^2}\ge\dfrac{\left(a^3+b^3+c^3\right)^2}{a^3+b^3+c^3+ab\left(a+b\right)+bc\left(b+c\right)+ca\left(c+a\right)}\)

    Mặt khác: \(\left(a-b\right)^2\ge0\Leftrightarrow a^2-ab+b^2\ge ab\Leftrightarrow a^3+b^3\ge ab\left(a+b\right)\)

    Tương tự: \(b^3+c^3\ge bc\left(b+c\right);c^3+a^3\ge ca\left(c+a\right)\)

    \(\Rightarrow2\left(a^3+b^3+c^3\right)\ge ab\left(a+b\right)+bc\left(b+c\right)+ca\left(c+a\right)\)

    \(3\left(a^3+b^3+c^3\right)\ge a^3+b^3+c^3+ab\left(a+b\right)+bc\left(b+c\right)+ca\left(c+a\right)\)

    \(\Rightarrow\dfrac{\left(a^3+b^3+c^3\right)^2}{a^3+b^3+c^3+ab\left(a+b\right)+bc\left(b+c\right)+ca\left(c+a\right)}\ge\dfrac{a^3+b^3+c^3}{3}\)

    Vậy ta có đpcm. Đẳng thức xảy ra khi và chỉ khi a=b=c

      bởi Nguyễn Trúc 30/01/2019
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON