YOMEDIA
NONE

Hãy tìm tọa độ giao điểm \(A,\;B\) của đồ thị hàm số \(y = {x^2}\) và \(y = x + 2.\) Gọi \(D,\;C\) lần lượt là hình chiếu vuông góc của \(A,\;B\) lên trục hoành. Tính diện tích tứ giác \(ABCD.\)

Hãy tìm tọa độ giao điểm \(A,\;B\) của đồ thị hàm số \(y = {x^2}\) và \(y = x + 2.\) Gọi \(D,\;C\) lần lượt là hình chiếu vuông góc của \(A,\;B\) lên trục hoành. Tính diện tích tứ giác \(ABCD.\) 

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • Phương trình hoành độ giao điểm của hai đồ thị hàm số là: \({x^2} = x + 2\)

    \(\begin{array}{l} \Leftrightarrow {x^2} - x - 2 = 0\\ \Leftrightarrow \left( {x + 1} \right)\left( {x - 2} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l}x + 1 = 0\\x - 2 = 0\end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l}x =  - 1 \Rightarrow A\left( { - 1;\;1} \right)\\x = 2 \Rightarrow B\left( {2;\;4} \right)\end{array} \right..\end{array}\)

    C là hình chiếu của B trên trục hoành \( \Rightarrow C\left( {2;\;0} \right).\)

    D là hình chiếu của A trên trục hoành \( \Rightarrow D\left( { - 1;\;0} \right).\)

    Dựa vào đồ thị hàm số ta thấy ABCD là hình thang vuông tại D và C.

    \(\begin{array}{l} \Rightarrow {S_{ABCD}} = \dfrac{{\left( {AD + CB} \right).CD}}{2} \\\;\;\;\;\;\;\;\;\;\;= \dfrac{{\left( {AD + CB} \right).\left( {DO + OC} \right)}}{2}\\\;\;\;\;\;\;\;\;\;\;= \dfrac{{\left( {1 + 4} \right)\left( {1 + 2} \right)}}{2} \\\;\;\;\;\;\;\;\;\;\;= \dfrac{{15}}{2} = 7,5\;\;\left( {dvdt} \right).\end{array}\)

    Vậy diện tích tứ giác ABCD là: \(7,5\;dvdt.\)

      bởi Việt Long 10/07/2021
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON