YOMEDIA
NONE

Hãy chứng minh rằng giá trị của biểu thức sau không phụ thuộc vào biến: \(\left( {\dfrac{{2 + \sqrt x }}{{x + 2\sqrt x + 1}} - \dfrac{{\sqrt x - 2}}{{x - 1}}} \right).\dfrac{{x\sqrt x + x - \sqrt x - 1}}{{\sqrt x }}\)

Hãy chứng minh rằng giá trị của biểu thức sau không phụ thuộc vào biến:  \(\left( {\dfrac{{2 + \sqrt x }}{{x + 2\sqrt x  + 1}} - \dfrac{{\sqrt x  - 2}}{{x - 1}}} \right).\dfrac{{x\sqrt x  + x - \sqrt x  - 1}}{{\sqrt x }}\)

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • Điều kiện: \(x > 0;x \ne 1\)

    Đặt \(\sqrt x=a\) thì biểu thức trở thành:

    \(\left( {\dfrac{{2 + a}}{{{a^2} + 2a + 1}} - \dfrac{{a - 2}}{{{a^2} - 1}}} \right).\dfrac{{{a^3} + {a^2} - a - 1}}{a}\)

    \( = \dfrac{{\left( {2 + a} \right)\left( {a - 1} \right) - \left( {a - 2} \right)\left( {a + 1} \right)}}{{{{\left( {a + 1} \right)}^2}\left( {a - 1} \right)}}.\dfrac{{{a^2}\left( {a + 1} \right) - \left( {a + 1} \right)}}{a}\)

    \( = \dfrac{{2a}}{{\left( {a + 1} \right)\left( {a + 1} \right)\left( {a - 1} \right)}}.\dfrac{{\left( {a - 1} \right)\left( {a + 1} \right)\left( {a + 1} \right)}}{a}\)

    \( = \dfrac{{2a}}{a} = 2\)

    Vậy biểu thức trên có giá trị bằng \(2\) (là hằng số) nên nó không phụ thuộc vào biến.

      bởi Ánh tuyết 10/07/2021
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON