YOMEDIA
NONE

Giải hệ phương trình x−2y+x/y=6, x^2−2xy−6y=0

Giai hệ phương trình:

a) \(\begin{cases}\frac{y}{x}+\frac{x}{y}=\frac{26}{5}\\x^2-y^2=24\end{cases}\)

b) \(\begin{cases}x-2y+\frac{x}{y}=6\\x^2-2xy-6y=0\end{cases}\)

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • Lời giải:

    a)

    \(\text{PT}(1)\Rightarrow 5(x^2+y^2)=26xy\Leftrightarrow (y-5x)(5y-x)=0\)\(\Rightarrow\left[\begin{matrix}x=5y\\y=5x\end{matrix}\right.\)

    Thay vào \(\text{PT}(2)\) :

    -Nếu \(x=5y\Rightarrow 24y^2=24\Leftrightarrow y=\pm 1\Rightarrow x=\pm 5\)

    -Nếu \(5x=y\Rightarrow -24y^2=24\) (vô lý)

    Vậy HPT có nghiệm \((x,y)=(-5,-1),(5,1)\)

    b)

    Thấy rằng bất kể \(x=0,y=0\) đều không phải nghiệm của HPT. Xét \(x,y \neq 0 \)

    \(\text{HPT}\Rightarrow \left\{\begin{matrix} x^2-2xy+\frac{x^2}{y}=6x\\ x^2-2xy=6y\end{matrix}\right.\Rightarrow \frac{x^2}{y}=6(x-y)\Rightarrow x^2+6y^2=6xy\)

    Đặt \(x=ty\Rightarrow ^2-6t+6=0\Rightarrow \)\(\left[\begin{matrix}t=3+\sqrt[]{3}\\t=3-\sqrt[]{3}\end{matrix}\right.\)

    Thay vào PT \(\left(2\right)\Rightarrow\left[\begin{matrix}\left(3+\sqrt{3}\right)^2y-2\left(3+\sqrt{3}\right)y=6\\\left(3-\sqrt{3}\right)^2y-2\left(3-\sqrt{3}\right)y=6\end{matrix}\right.\)

    \(\Rightarrow\left[\begin{matrix}y=-3+2\sqrt{3}\\y=-3-2\sqrt{3}\end{matrix}\right.\Rightarrow\left[\begin{matrix}x=-3+3\sqrt{3}\\x=-3-3\sqrt{3}\end{matrix}\right.\)

      bởi Nguyễn Long 21/01/2019
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON