YOMEDIA
NONE

Chứng minh (AB+BC+CA)(AB-BC+CA) >=4AH^2

Cho tam giác ABC vuông tại A ,đường cao AH Chứng minh (AB+BC+CA)(AB-BC+CA)\(\ge4AH^2\)

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • Lời giải:

    Gọi \((AB,BC,AC)=(c,a,b)\)

    Theo định lý Pitago có \(a^2=b^2+c^2\)

    Ta cần cm:

    \((c+b+a)(c+b-a)\geq 4AH^2\Leftrightarrow (b+c)^2-a^2\geq 4AH^2\)

    \(\Leftrightarrow (b+c)^2-b^2-c^2\geq 4AH^2\)

    \(\Leftrightarrow bc\geq 2AH^2\)

    Sử dụng hệ thức lượng quen thuộc trong tam giác vuông:

    \(\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AC^2}\Leftrightarrow \frac{1}{AH^2}=\frac{1}{c^2}+\frac{1}{b^2}\)

    \(\Leftrightarrow AH^2=\frac{b^2c^2}{b^2+c^2}\)

    BĐT cần cm trở thành: \(bc\geq 2\frac{b^2c^2}{b^2+c^2}\Leftrightarrow b^2+c^2\geq 2bc\) (luôn đúng theo BĐT AM-GM)

    Do đó ta có đpcm

    Dấu bằng xảy ra khi tam giác $ABC$ vuông cân.

      bởi maituansang sang 07/01/2019
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON