YOMEDIA
NONE

Trong không gian tọa độ Oxyz cho hai mặt phẳng \(\eqalign{ & (\alpha ):2x - y + 3z + 1 = 0, \cr & (\alpha '):x - y + z + 5 = 0 \cr} \) Và điểm M(1; 5; 0). Viết phương trình mặt phẳng đi qua giao tuyến của \((\alpha )\) ,\((\alpha ')\) và vuông góc với mặt phẳng (P):3x - y + 1=0.

Trong không gian tọa độ Oxyz cho hai mặt phẳng  \(\eqalign{  & (\alpha ):2x - y + 3z + 1 = 0,  \cr  & (\alpha '):x - y + z + 5 = 0 \cr} \) Và điểm M(1; 5; 0). Viết phương trình mặt phẳng đi qua giao tuyến của \((\alpha )\) ,\((\alpha ')\) và vuông góc với mặt phẳng (P):3x - y + 1=0.

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • Gọi (R) là mặt phẳng qua \(\Delta \) (giao tuyến của \(\left( \alpha  \right)\) và \(\left( {\alpha '} \right)\)) và vuông góc với mp(P): \(3x{\rm{ }} - y + {\rm{ }}1{\rm{ }} = {\rm{ }}0.\) Mặt phẳng (P) có vectơ pháp tuyến \(\overrightarrow {{n_P}}  = {\rm{ }}\left( {3{\rm{ }};{\rm{ }} - 1{\rm{ }};{\rm{ }}0} \right).\)

    Khi đó (R) đi qua điểm Mơ = (4 ; 9 ; 0) và có vectơ pháp tuyến

    \(\overrightarrow {{n_R}}  = \left[ {\overrightarrow {{u_\Delta }} ,\overrightarrow {{n_P}} } \right] \)

    \(= \left( {\left| {\matrix{   { - 1} & 1  \cr   { - 1} & 0  \cr  } } \right|;\left| {\matrix{   1 & { - 2}  \cr   0 & 3  \cr  } } \right|;\left| {\matrix{   { - 2} & { - 1}  \cr   3 & { - 1}  \cr  } } \right|} \right)\)

    \(= \left( {1;3;5} \right).\)

    Vậy phương trình của mp(R) là

    \(1(x{\rm{ }} - 4){\rm{ }} + {\rm{ }}3\left( {y{\rm{ }} - {\rm{ }}9} \right){\rm{ }} + {\rm{ }}5\left( {z{\rm{ }} - {\rm{ }}0} \right){\rm{ }} = {\rm{ }}0\)

    \(\Leftrightarrow x + {\rm{ }}3y{\rm{ }} + {\rm{ }}5z{\rm{ }} - {\rm{ }}31{\rm{ }} = 0.\)

      bởi Đào Thị Nhàn 25/05/2021
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
NONE
ON