YOMEDIA
NONE

Trong không gian Oxyz, cho hai điểm \(A\left( {1; - 2;3} \right),\) \(B\left( {3;2; - 2} \right)\) và mặt phẳng \(\left( P \right):x + 2y - 4z - 7 = 0\). Đường thẳng AB cắt mặt phẳng \(\left( P \right)\) tại M. Giá trị của biểu thức \(\frac{{MA}}{{MB}}\) bằng đáp án:

A. \(\frac{5}{{21}}.\)      B. 1.

C. \(\frac{1}{3}.\)           D. \(\frac{{11}}{4}.\)

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • Ta có \(\left\{ \begin{array}{l}{P_A} = 1 + 2.\left( { - 2} \right) - 4.3 - 7 =  - 22\\{P_B} = 3 + 2.2 - 4.\left( { - 2} \right) - 7 = 8\end{array} \right.\)

    \( \Rightarrow {P_A}.{P_B} < 0 \Rightarrow A,\,\,B\) nằm khác phía so với mặt phẳng \(\left( P \right)\).

    Gọi \(H,\,\,K\) lần lượt là hình chiếu của \(A,\,\,B\) lên \(\left( P \right)\), ta có \(\left\{ \begin{array}{l}AH \bot \left( P \right)\\BK \bot \left( P \right)\end{array} \right. \Rightarrow AH\parallel BK\). Áp dụng định lí Ta-lét ta có: \(\frac{{MA}}{{MB}} = \frac{{AH}}{{BK}} = \frac{{d\left( {A;\left( P \right)} \right)}}{{d\left( {B;\left( P \right)} \right)}}\).

    \(\begin{array}{l}d\left( {A;\left( P \right)} \right) = \frac{{\left| {1 + 2.\left( { - 2} \right) - 4.3 - 7} \right|}}{{\sqrt {{1^2} + {2^2} + {{\left( { - 4} \right)}^2}} }} = \frac{{22}}{{\sqrt {21} }}\\d\left( {B;\left( P \right)} \right) = \frac{{\left| {3 + 2.2 - 4.\left( { - 2} \right) - 7} \right|}}{{\sqrt {{1^2} + {2^2} + {{\left( { - 4} \right)}^2}} }} = \frac{8}{{\sqrt {21} }}\end{array}\)

    Vậy \(\frac{{MA}}{{MB}} = \frac{{d\left( {A;\left( P \right)} \right)}}{{d\left( {B;\left( P \right)} \right)}} = \frac{{22}}{8} = \frac{{11}}{4}.\)

    Chọn D.

      bởi Thu Hang 09/06/2021
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
NONE
ON