YOMEDIA
NONE

Trong không gian \(Oxyz\) cho \(A\left( {1; - 1;2} \right)\), \(f\left( x \right) = 0 \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = 1\\x = 3\end{array} \right.\), \(C\left( {0;1; - 2} \right)\). Gọi \(M\left( {a;b;c} \right)\) là điểm thuộc mặt phẳng \(\left( {Oxy} \right)\) sao cho biểu thức \(S = \overrightarrow {MA} .\overrightarrow {MB} + 2\overrightarrow {MB} .\overrightarrow {MC} + 3\overrightarrow {MC} .\overrightarrow {MA} \) đạt giá trị nhỏ nhất. Khi đó \(T = 12a + 12b + c\) có giá trị là

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • \(S = \overrightarrow {MA} .\overrightarrow {MB}  + 2\overrightarrow {MB} .\overrightarrow {MC}  + 3\overrightarrow {MC} .\overrightarrow {MA} \)

    \( = \dfrac{1}{2}\left[ {M{A^2} + M{B^2} - {{\left( {\overrightarrow {MA}  - \overrightarrow {MB} } \right)}^2} + 2M{B^2} + 2M{C^2} - 2{{\left( {\overrightarrow {MB}  - \overrightarrow {MC} } \right)}^2} + 3M{A^2} + 3M{C^2} - 3{{\left( {\overrightarrow {MA}  - \overrightarrow {MC} } \right)}^2}} \right]\)

    \( = \dfrac{1}{2}\left[ {4M{A^2} + 3M{B^2} + 5M{C^2} - A{B^2} - 2B{C^2} - 3A{C^2}} \right]\)

    Xác định tọa độ điểm \(I\left( {m;n;p} \right)\) sao cho

    \(4\overrightarrow {IA}  + 3\overrightarrow {IB}  + 5\overrightarrow {IC}  = \overrightarrow 0  \Leftrightarrow \left\{ \begin{array}{l}4\left( {1 - m} \right) + 3\left( { - 2 - m} \right) + 5\left( {0 - m} \right) = 0\\4\left( { - 1 - n} \right) + 3\left( {0 - n} \right) + 5\left( {1 - n} \right) = 0\\4\left( {2 - p} \right) + 3\left( {3 - p} \right) + 5\left( { - 2 - p} \right) = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}m =  - \dfrac{1}{6}\\n = \dfrac{1}{{12}}\\p = \dfrac{7}{{12}}\end{array} \right.\,\,\,\,\,\,\, \Rightarrow I\left( { - \dfrac{1}{6};\dfrac{1}{{12}};\dfrac{7}{{12}}} \right)\)

    Khi đó:

    \(\begin{array}{l}S = \dfrac{1}{2}\left[ {4M{A^2} + 3M{B^2} + 5M{C^2} - A{B^2} - 2B{C^2} - 3A{C^2}} \right]\\\,\,\,\, = \dfrac{1}{2}\left[ {4{{\left( {\overrightarrow {MI}  + \overrightarrow {IA} } \right)}^2} + 3{{\left( {\overrightarrow {MI}  + \overrightarrow {IB} } \right)}^2} + 5{{\left( {\overrightarrow {MI}  + \overrightarrow {IC} } \right)}^2} - A{B^2} - 2B{C^2} - 3A{C^2}} \right]\\\,\,\,\, = \dfrac{1}{2}\left[ {12M{I^2} + 2\overrightarrow {MI} .\left( {4\overrightarrow {IA}  + 3\overrightarrow {IB}  + 5\overrightarrow {IC} } \right) + 4I{A^2} + 3I{B^2} + 5I{C^2} - A{B^2} - 2B{C^2} - 3A{C^2}} \right]\\\,\,\,\, = \dfrac{1}{2}\left[ {12M{I^2} + 4I{A^2} + 3I{B^2} + 5I{C^2} - A{B^2} - 2B{C^2} - 3A{C^2}} \right]\,\,\left( {do\,\,4\overrightarrow {IA}  + 3\overrightarrow {IB}  + 5\overrightarrow {IC}  = \overrightarrow 0 } \right)\end{array}\)

    \( \Rightarrow S\) đạt giá trị nhỏ nhất khi và chỉ khi \(MI\) ngắn nhất \( \Leftrightarrow M\) là hình chiếu của I lên (Oxy)

    \( \Leftrightarrow M\left( { - \dfrac{1}{6};\dfrac{1}{{12}};0} \right)\,\,\, \Rightarrow \left\{ \begin{array}{l}a =  - \dfrac{1}{6}\\b = \dfrac{1}{{12}}\\c = 0\end{array} \right.\)\( \Rightarrow T = 12a + 12b + c = 12.\dfrac{{ - 1}}{6} + 12.\dfrac{1}{{12}} + 0 =  - 1\).

      bởi Mai Linh 16/05/2022
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON