YOMEDIA
NONE

Tính z_1^3+z_2^3+z_3^3 biết z_1, z_2, z_3 là 3 nghiệm phức

Cho z1 ; z2; z3 lần lượt là ba nghiệm phức của phương trình 2x3- 3x - 2=0. Tính z13+z23+z33.

A.-1 B.3 C.-3/2 D.1

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • Lời giải:

    Nếu $z_1,z_2,z_3$ là 3 nghiệm phức của pt \(2x^3-3x-2=0\) thì theo định lý Vi-et ta có:

    \(\left\{\begin{matrix} z_1+z_2+z_3=0\\ z_1z_2z_3=1\end{matrix}\right.\)

    Kết hợp hệ phương trình trên với hằng đẳng thức:

    \(z_1^3+z_2^3+z_3^3=(z_1+z_2)^3-3z_1z_2(z_1+z_2)+z_3^3\)

    \(=(-z_3)^3-3z_1z_2(-z_3)+z_3^3=3z_1z_2z_3=3\)

    Đáp án B

      bởi Hoàng Phương Thảo 24/10/2018
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON