YOMEDIA
NONE

Tìm n nguyên dương lớn nhất để (u_n.S_2n)/(u_n.S_n) < 148/75

Cho dãy số u(n) thỏa mãn log\(_3\)(2u\(_5\)-63)=2log\(_4\)(u\(_n\)-8n+8),với mọi n thuộc N*.đặt Sn=u\(_1\)+u\(_2\)+...+u\(_n\).Tìm số nguyên dương lớn nhất n thỏa mãn \(\dfrac{u_n.S_{2n}}{u_n.S_n}< \dfrac{148}{75}\).(Cho mình hỏi bày này với)

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • thay \(n=5\)vào phương trình trên => \(log_3\left(2u_5-63\right)=2log_4\left(u_5-32\right)=t\) => \(\left\{{}\begin{matrix}2u_5-63=3^t\\u_5-32=2^t\end{matrix}\right.\)

    => \(\left\{{}\begin{matrix}2u_5-63=3^t\\2u_5+32=2.2^t\end{matrix}\right.\)=>\(1+2.2^t=2^t\Leftrightarrow\dfrac{1}{3^t}+2.\left(\dfrac{2}{3}\right)^t=1\)(1)

    \(y=\dfrac{1}{3^t}+2.\left(\dfrac{2}{3}\right)^t\) là hàm nghịch biến trên R nên (1) có nghiệm duy nhất t=2 => \(u_5=36\). Thay vào pt ban đầu: \(log_3\left(2.36-63\right)=2log_4\left(u_n-8n+8\right)\)\(\Leftrightarrow u_n=8n-4=4+8\left(n-1\right)\)

    => \(S_n=\dfrac{n\left(8+8\left(n-1\right)\right)}{2}=4n^2\)

    => \(\dfrac{u_n.S_{2n}}{u_{2n}.S_n}=\dfrac{\left(8n-4\right)\left(16n^2\right)}{\left(16n-4\right).4n^2}=\dfrac{4\left(2n-1\right)}{\left(4n-1\right)}< \dfrac{148}{75}\)

    => \(n< 19\)\(\Rightarrow n_{max}=18\)

      bởi nguyễn thị bảo nhi 24/10/2018
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON