YOMEDIA
NONE

Tìm giá trị lớn nhất của tham số \(f(x) = \sqrt {x + m} + \sqrt {x + n} + \sqrt {m + n} \) Với \(x,m,n \ge 0,x + m + n = 1\)

Tìm giá trị lớn nhất của tham số  \(f(x) = \sqrt {x + m}  + \sqrt {x + n}  + \sqrt {m + n} \)  Với \(x,m,n \ge 0,x + m + n = 1\) 

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • Xét hai vectơ : \(\overrightarrow u  = \left( {\sqrt {x + m} ;\sqrt {x + n} ;\sqrt {m + n} } \right)\) và \(\overrightarrow v  = (1;1;1).\)

    Ta có \(\left| {\overrightarrow u } \right| = \sqrt 2 \), \(\left| {\overrightarrow v } \right| = \sqrt 3 \) suy ra \(f\left( x \right) = \overrightarrow u .\overrightarrow v  \le \left| {\overrightarrow u } \right|.\left| {\overrightarrow v } \right| = \sqrt 6 \).

    Dấu bằng xảy ra khi \(\overrightarrow u \), \(\overrightarrow v \) cùng hướng, nghĩa là

    \({{\sqrt {x + m} } \over 1} = {{\sqrt {x + n} } \over 1} = {{\sqrt {m + n} } \over 1} > 0 \Leftrightarrow x = m = n > 0.\)

    Kết hợp với \(x + m + n = 1\) suy ra \(x = m = n = {1 \over 3}\)

    Vậy \(f\left( x \right)\) đạt giá trị lớn nhất bằng \(\sqrt 6 \) khi \(x = m = n = {1 \over 3}\)

      bởi thanh hằng 25/05/2021
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON