YOMEDIA
NONE

Tam giác \(ABC\) vuông tại \(A\) có \(BC = 2a\) và \(\widehat B = {30^0}\). Quay tam giác vuông này quanh trục \(AB\), ta được một hình nón đỉnh \(B\). Gọi \({S_1}\) là diện tích toàn phân của hình nón đó và \({S_2}\) là diện tích mặt cầu có đường kính \(AB\). Khi đó, tỉ số \(\dfrac{{{S_1}}}{{{S_2}}}\) là:

A. \(1\)                         

B. \(\dfrac{1}{2}\)

C. \(\dfrac{2}{3}\)                     

D. \(\dfrac{3}{2}\)

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • Tam giác \(ABC\) vuông tại \(A\) có \(AC = BC\sin {30^0} = a\); \(AB = BC\cos {30^0} = a\sqrt 3 \).

    Diện tích toàn phần hình nón là:

    \({S_1} = {S_{xq}} + {S_d}\) \( = \pi rl + \pi {r^2}\) \(=\pi AC.BC +\pi AC^2\) \( = \pi a.2a + \pi {a^2}\) \( = 2\pi {a^2} + \pi {a^2} = 3\pi {a^2}\)

    Diện tích mặt cầu đường kính \(AB\) là:

    \({S_2}  = 4\pi .{\left( {\frac{{AB}}{2}} \right)^2}= \pi A{B^2} \) \(= \pi {\left( {a\sqrt 3 } \right)^2} = 3\pi {a^2}\).

    Vậy \(\dfrac{{{S_1}}}{{{S_2}}} = 1\).

    Chọn A.

      bởi Ngoc Tiên 07/06/2021
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
NONE
ON