YOMEDIA
NONE

Khối lăng trụ tứ giác đều ABCD.A’B’C’D’ có cạnh đáy bằng a và mặt phăng (DBC’) hợp với mặt đáy (ABCD) một góc \({60^0}\). Tính theo a thể tích của khối lăng trụ ABCD.A’B’C’D’.

A. \(\dfrac{{\sqrt 6 {a^3}}}{2}\)            

B. \(\sqrt 6 {a^3}\)       

C. \(\dfrac{{\sqrt 6 {a^3}}}{6}\)                   

D. \(\dfrac{{\sqrt 6 {a^3}}}{3}\)

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • Vì ABCD.A’B’C’D’ là lăng trụ tứ giác đều nên ABCD là hình vuông cạnh a \( \Rightarrow AC \bot BD\) tại O.

    Ta có: \(\left\{ {\begin{array}{*{20}{l}}{BD \bot CO}\\{BD \bot CC'}\end{array}} \right. \Rightarrow BD \bot \left( {C'CO} \right) \Rightarrow BD \bot C'O\).

     

    \(\left\{ {\begin{array}{*{20}{l}}{\left( {DBC'} \right) \cap \left( {ABCD} \right) = BD}\\{C'O \subset \left( {DBC'} \right);{\mkern 1mu} {\mkern 1mu} C'O \bot BD{\mkern 1mu} {\mkern 1mu} \left( {cmt} \right)}\\{CO \subset \left( {ABCD} \right);{\mkern 1mu} {\mkern 1mu} CO \bot BD}\end{array}} \right.\)  \( \Rightarrow \angle \left( {\left( {DBC'} \right);\left( {ABCD} \right)} \right) = \angle \left( {\left( {C'O;CO} \right)} \right) = \angle C'OC = {60^0}\).

    Vì ABCD là hình vuông cạnh a nên \(AC = a\sqrt 2 {\rm{\;}} \Rightarrow CO = \dfrac{{a\sqrt 2 }}{2}\).

    Xét tam giác vuông C’CO có \(CC' = CO.\tan {60^0} = \dfrac{{a\sqrt 2 }}{2}.\sqrt 3 {\rm{\;}} = \dfrac{{a\sqrt 6 }}{2}\).

    Vậy \({V_{ABCD.A'B'C'D'}} = CC'.{S_{ABCD}} = \dfrac{{a\sqrt 6 }}{2}.{a^2} = \dfrac{{\sqrt 6 {a^3}}}{2}\).

    Chọn A.

      bởi trang lan 07/05/2021
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
NONE
ON