YOMEDIA
NONE

Hình nón tròn xoay có đỉnh là \(S\), \(O\) là tâm của đường tròn đáy, đường sinh bằng \(a\sqrt 2 \) và góc giữa đường sinh và mặt phẳng đáy bằng \({60^0}\). Diện tích xung quanh \({S_{xq}}\) của hình nón và thể tích \(V\) của khối nón tương ứng là:

A. \({S_{xq}} = \pi {a^2},V = \dfrac{{\pi {a^3}\sqrt 6 }}{4}\)  

B. \({S_{xq}} = \dfrac{{\pi {a^2}}}{2},V = \dfrac{{\pi {a^3}\sqrt 3 }}{{12}}\)  

C. \({S_{xq}} = \pi {a^2}\sqrt 2 ,V = \dfrac{{\pi {a^3}\sqrt 6 }}{4}\)  

D. \({S_{xq}} = \pi {a^2},V = \dfrac{{\pi {a^3}\sqrt 6 }}{{12}}\)  

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • Gọi \(A\) là một điểm thuộc đường tròn đáy của hình nón.

    Đường sinh \(SA = a\sqrt 2 \), góc giữa đường sinh và mặt phẳng đáy \(\widehat {SAO} = {60^0}\).

    Tam giác \(SAO\) vuông tại \(O\) có:

    \(OA = SA\cos {60^0} = \dfrac{{a\sqrt 2 }}{2}\); \(SO = SA\sin {60^0}\) \( = a\sqrt 2 .\dfrac{{\sqrt 3 }}{2} = \dfrac{{a\sqrt 6 }}{2}\)

    Diện tích xung quanh hình nón: \({S_{xq}} = \pi rl = \pi .\dfrac{{a\sqrt 2 }}{2}.a\sqrt 2  = \pi {a^2}\).

    Thể tích \(V = \dfrac{1}{3}\pi {r^2}h\) \( = \dfrac{1}{3}\pi .{\left( {\dfrac{{a\sqrt 2 }}{2}} \right)^2}.\dfrac{{a\sqrt 6 }}{2} = \dfrac{{\pi {a^3}\sqrt 6 }}{{12}}\).

    Chọn D.

      bởi Lan Ha 07/06/2021
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
NONE
ON