YOMEDIA
NONE

Cho tứ diện \(SABC\), có \(SA,\,SB,\,SC\) đôi một vuông góc. Và biết \(SA = a,SB = a;SC = 2a\). Tính khoảng cách từ điểm \(S\) đến mặt phẳng \(\left( {ABC} \right)\)

A. \(\frac{{2a}}{3}\).                               

B. \(\frac{a}{2}\).

C. \(\frac{{a\sqrt 2 }}{2}\).                       

D. \(\frac{{2a\sqrt 5 }}{5}\).

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • Tứ diện \(S.ABC\) vuông tại \(S\) nên khoảng cách từ \(S\) đến mặt phẳng \(\left( {ABC} \right)\) là \(h\) thỏa mãn\(\frac{1}{{{h^2}}} = \frac{1}{{S{A^2}}} + \frac{1}{{S{B^2}}} + \frac{1}{{S{C^2}}}\) \( = \frac{1}{{{a^2}}} + \frac{1}{{{a^2}}} + \frac{1}{{{{\left( {2a} \right)}^2}}}\) \( = \frac{9}{{4{a^2}}} \Rightarrow h = \frac{{2a}}{3}\) 

    Đáp án A.

      bởi Bao Chau 10/06/2021
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON