YOMEDIA
NONE

Cho tứ diện \(ABCD\) có \(\Delta ABC\) là tam giác đều cạnh bằng \(a\). \(\Delta BCD\) vuông cân tại \(D\) và nằm trong mặt phẳng vuông góc với \(\left( {ABC} \right)\). Hãy tính theo \(a\) thể tích của tứ diện \(ABCD\).

A. \(\dfrac{{3{a^3}}}{8}\)                            

B. \(\dfrac{{{a^3}\sqrt 3 }}{8}\)   

C. \(\dfrac{{3{a^3}}}{{24}}\)                             

D. \(\dfrac{{{a^3}\sqrt 3 }}{{24}}\)  

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  •                                         

    Gọi \(H\) là trung điểm \(BC\). Tam giác \(BCD\) vuông cân tại \(D\) nên \(DH \bot BC\)

    Ta có:

    \(\left\{ \begin{array}{l}\left( {BCD} \right) \bot \left( {ABC} \right)\\\left( {BCD} \right) \cap \left( {ABC} \right) = BC\\DH \bot BC\\DH \subset \left( {DBC} \right)\end{array} \right. \Rightarrow DH \bot \left( {ABC} \right)\)

    Tam giác \(DBC\) vuông tại \(D\) nên đường trung tuyến \(DH = \dfrac{1}{2}BC = \dfrac{a}{2}\)

    Tam giác \(ABC\) là tam giác đều cạnh \(a\) nên \({S_{\Delta ABC}} = \dfrac{{\sqrt 3 }}{4}A{B^2} = \dfrac{{\sqrt 3 }}{4}{a^2}\)

    Vậy thể tích của tứ diện \(ABCD\) là 

    Chọn D

      bởi Nhật Duy 07/06/2021
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON