YOMEDIA
NONE

Cho khối tứ diện \(OABC\) với \(OA,OB,OC\) vuông góc từng đôi một và \(OA = a;OB = 2a;OC = 3a.\) Gọi \(M,N\) lần lượt là trung điểm của hai cạnh \(AC,BC.\) Tính thể tích của khối tứ diện \(OCMN\) theo \(a\)

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • Ta có \({V_{OABC}} = \frac{1}{3}OA.{S_{OBC}} = \frac{1}{3}.a.\frac{1}{2}.2a.3a = {a^3}\)

    Lại có \(\frac{{{V_{OCMN}}}}{{{V_{OCAB}}}} = \frac{{OC}}{{OC}}.\frac{{OM}}{{OA}}.\frac{{ON}}{{OB}} = \frac{1}{2}.\frac{1}{2} = \frac{1}{4}\)  nên \({V_{OCMN}} = \frac{1}{4}{V_{OCAB}} = \frac{1}{4}.{a^3} = \frac{{{a^3}}}{4}\)

      bởi Trần Phương Khanh 09/05/2022
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON