YOMEDIA
NONE

Cho khối lăng trụ tam giác đều \(ABC.A'B'C'\) có chiều cao là a và \(AB' \bot BC'\). Tính thể tích lăng trụ

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • Gọi M là trung điểm của A’C’, O là tâm của hình chữ nhật ABB’A’.

    Do \(OM//BC',\,\,AB' \bot BC'\) nên \(OM \bot AB'\)

    Gọi độ dài cạnh đáy của lăng trụ là x.

    Ta có: \(BM = \dfrac{{x\sqrt 3 }}{2}\), \(OM = \dfrac{{BC}}{2} = \dfrac{{\sqrt {{a^2} + {x^2}} }}{2}\), \(OB' = \dfrac{{AB'}}{2} = \dfrac{{\sqrt {{a^2} + {x^2}} }}{2}\)

    \( \Rightarrow \Delta OB'M\) vuông cân tại O

    \(\begin{array}{l} \Rightarrow MB' = \sqrt 2 .OB' \Leftrightarrow \dfrac{{x\sqrt 3 }}{2} = \sqrt 2 .\dfrac{{\sqrt {{a^2} + {x^2}} }}{2}\\ \Leftrightarrow 3{x^2} = 2{a^2} + 2{x^2} \Leftrightarrow {x^2} = 2{a^2} \Leftrightarrow x = a\sqrt 2 \end{array}\)

    Diện tích tam giác ABC là: \(S = \dfrac{{{{\left( {a\sqrt 2 } \right)}^2}\sqrt 3 }}{4} = \dfrac{{{a^2}\sqrt 3 }}{2}\)

    Thể tích khối lăng trụ là:  \(V = Sh = \dfrac{{{a^2}\sqrt 3 }}{2}.a = \dfrac{{{a^3}\sqrt 3 }}{2}\).

      bởi Anh Trần 05/05/2022
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
NONE
ON