YOMEDIA
NONE

Cho hình chóp tứ giác S.ABCD có đáy ABCD là hình vuông cạnh bằng \(\sqrt 2 a\). Tam giác SAD cân tại \(S\) và mặt bên \(\left( {SAD} \right)\) vuông góc với mặt phẳng đáy. Thể tích khối chóp S.ABCD bằng \(\dfrac{4}{3}{a^3}\). Tính khoảng cách h từ \(B\) đến mặt phẳng \(\left( {SCD} \right)\).

A. \(h = \dfrac{2}{3}a\)                 B. \(h = \dfrac{4}{3}a\)  

C. \(h = \dfrac{8}{3}a\)                  D. \(h = \dfrac{3}{4}a\)

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  •  

    Kẻ \(SH \bot AD \Rightarrow H\) là trung điểm của AD\((\)\Delta SAD cân tại \(S\)).

    Kéo dài \(BH \cap CD = E\).

    \(\left\{ {\begin{array}{*{20}{l}}{\left( {SAD} \right) \bot \left( {ABCD} \right)}\\{SH \supset \left( {SAD} \right)}\end{array}} \right. \Rightarrow SH \bot \left( {ABCD} \right)\).

    Xét tam giác EBC có: \(\left\{ {\begin{array}{*{20}{l}}{HD\parallel BC}\\{HD = \dfrac{1}{2}BC}\end{array}} \right. \Rightarrow HD\) là đường trung bình của tam giác EBC.

    \( \Rightarrow H\) là trung điểm của BE.

    \({V_{S.ABCD}} = \dfrac{1}{3}SH.{S_{ABCD}} \Leftrightarrow \dfrac{4}{3}{a^3} = \dfrac{1}{3}SH.2{a^2} \Leftrightarrow SH = 2a\).

    Kẻ \(HK \bot SD \Rightarrow d\left( {H;\left( {SCD} \right)} \right) = HK\).

    Có \(\dfrac{{d\left( {H;\left( {SCD} \right)} \right)}}{{d\left( {B;\left( {SCD} \right)} \right)}} = \dfrac{{HE}}{{BE}} = \dfrac{1}{2}\).

    Xét tam giác SHD vuông tại \(H\) có: \(\dfrac{1}{{H{K^2}}} = \dfrac{1}{{S{H^2}}} + \dfrac{1}{{S{D^2}}} = \dfrac{1}{{4{a^2}}} + \dfrac{1}{{\dfrac{{{a^2}}}{2}}} = \dfrac{9}{{4{a^2}}} \Rightarrow HK = \dfrac{{2a}}{3}\).

    \(d\left( {B;\left( {SCD} \right)} \right) = 2d\left( {H;\left( {SCD} \right)} \right) = 2HK = 2\dfrac{{2a}}{3} = \dfrac{{4a}}{3}\).

    Chọn B.

      bởi Anh Linh 11/06/2021
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON