YOMEDIA
NONE

Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình vuông tâm O cạnh a, SO vuông góc với mặt phẳng \(\left( {ABCD} \right)\) và \(SO = a\). Khoảng cách giữa \(SC\) và \(AB\) bằng

A. \(\dfrac{{a\sqrt 5 }}{5}\).

B. \(\dfrac{{a\sqrt 3 }}{{15}}\).

C. \(\dfrac{{2a\sqrt 5 }}{5}\).

D. \(\dfrac{{2a\sqrt 3 }}{{15}}\).

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • Ta có: \(\left\{ \begin{array}{l}AB//CD\\CD \subset \left( {SCD} \right)\\AB \not\subset \left( {SCD} \right)\end{array} \right.\,\, \Rightarrow AB//\left( {SCD} \right)\,\).

    Mà \(SC \subset \left( {SCD} \right)\,\, \Rightarrow d\left( {AB;SC} \right) = d\left( {AB;\left( {SCD} \right)} \right) = d\left( {A;\left( {SCD} \right)} \right)\)

    Do \(O\) là trung điểm của AC,

    \( \Rightarrow \dfrac{{d\left( {A;\left( {SCD} \right)} \right)}}{{d\left( {O;\left( {SCD} \right)} \right)}} = \dfrac{{AC}}{{OC}} = 2 \Rightarrow d\left( {A;\left( {SCD} \right)} \right) = 2d\left( {O;\left( {SCD} \right)} \right)\)

    Gọi I là trung điểm của CD. Dựng \(OH \bot SI,\,\,H \in SI\) (1)

    Ta có: \(\left\{ \begin{array}{l}CD \bot OI\\CD \bot SO\end{array} \right.\,\, \Rightarrow CD \bot \left( {SOI} \right) \Rightarrow CD \bot OH\)  (2)

    Từ (1), (2), suy ra \(OH \bot \left( {SCD} \right)\, \Rightarrow d\left( {O;\left( {SCD} \right)} \right) = OH\)

    \(\Delta SOI\)vuông tại O, \(OH \bot SI \Rightarrow \dfrac{1}{{O{H^2}}} = \dfrac{1}{{O{I^2}}} + \dfrac{1}{{S{O^2}}} = \dfrac{1}{{{{\left( {\dfrac{a}{2}} \right)}^2}}} + \dfrac{1}{{{a^2}}} = \dfrac{5}{{{a^2}}} \Rightarrow OH = \dfrac{{a\sqrt 5 }}{5}\)

    \( \Rightarrow d\left( {AB;CD} \right) = \dfrac{{2a\sqrt 5 }}{5}\).

    Chọn: C

      bởi Ha Ku 08/07/2022
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON