YOMEDIA
NONE

Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình vuông cạnh \(a\). Tam giác \(SAB\) đều và nằm trong mặt phẳng vuông góc với đáy. Hãy tính khoảng cách từ điểm \(C\) đến mặt phẳng \(\left( {SAD} \right)\).

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • Gọi \(H\) là trung điểm của \(AB\) suy ra \(SH \bot \left( {ABCD} \right)\).

    Ta thấy: \(BC//AD \subset \left( {SAD} \right) \Rightarrow BC//\left( {SAD} \right)\) \( \Rightarrow d\left( {C,\left( {SAD} \right)} \right) = d\left( {B,\left( {SAD} \right)} \right) = 2d\left( {H,\left( {SAD} \right)} \right)\)

    (vì \(H\) là trung điểm của \(AB\)).

    Gọi \(K\) là hình chiếu của \(H\) lên \(SA\) \( \Rightarrow HK \bot SA\).

    Lại có \(\left\{ \begin{array}{l}AD \bot AB\\AD \bot SH\end{array} \right. \Rightarrow AD \bot \left( {SAB} \right) \Rightarrow AD \bot HK\).

    Từ hai điều trên suy ra \(HK \bot \left( {SAD} \right) \Rightarrow d\left( {H,\left( {SAD} \right)} \right) = HK\).

    Tam giác \(SAB\) đều cạnh \(a\) nên \(SH = \dfrac{{a\sqrt 3 }}{2},HA = \dfrac{a}{2}\)\( \Rightarrow HK = \dfrac{{HA.HS}}{{SA}} = \dfrac{{\dfrac{a}{2}.\dfrac{{a\sqrt 3 }}{2}}}{a} = \dfrac{{a\sqrt 3 }}{4}\)

    \( \Rightarrow d\left( {C,\left( {SAD} \right)} \right) = 2d\left( {H,\left( {SAD} \right)} \right) = 2.\dfrac{{a\sqrt 3 }}{4} = \dfrac{{a\sqrt 3 }}{2}\).

      bởi Anh Nguyễn 05/05/2022
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
NONE
ON