YOMEDIA
NONE

Cho hình chóp \(S.\,ABCD\) có đáy \(ABCD\) là hình thoi cạnh \(a\) và \(\widehat {ABC} = 60^\circ \). Hình chiếu vuông góc của điểm \(S\) lên mặt phẳng \(\left( {ABCD} \right)\) trùng với trọng tâm tam giác \(ABC\). Gọi \(\varphi \) là góc giữa đường thẳng \(SB\) với mặt phẳng \(\left( {SCD} \right)\), tính \(\sin \varphi \) biết rằng \(SB = a\).

A. \(\sin \varphi  = \dfrac{1}{4}\).

B. \(\sin \varphi  = \dfrac{1}{2}\).

C. \(\sin \varphi  = \dfrac{{\sqrt 3 }}{2}\). 

D. \(\sin \varphi  = \dfrac{{\sqrt 2 }}{2}\).

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • Gọi \(M\) là trung điểm của \(SD\), nhận xét góc giữa \(SB\) và \(\left( {SCD} \right)\) cũng bằng góc giữa \(OM\) và \(\left( {SCD} \right)\) (Vì \(OM//SB\))

    Gọi \(H\) là hình chiếu của \(O\) trên \(\left( {SCD} \right)\) \( \Rightarrow \widehat {\left( {OM,\left( {SCD} \right)} \right)} = \widehat {\left( {OM,MH} \right)} = \widehat {OMH}\).

    Trong \(\left( {SBD} \right)\) kẻ \(OE//SH\), khi đó tứ diện \(OECD\) là tứ diện vuông nên \(\dfrac{1}{{O{H^2}}} = \dfrac{1}{{O{C^2}}} + \dfrac{1}{{O{D^2}}} + \dfrac{1}{{O{E^2}}}\).

    Ta dễ dàng tính được \(OC = \dfrac{a}{2},OD = \dfrac{{a\sqrt 3 }}{2}\).

    Lại có: \(\dfrac{{OE}}{{SH}} = \dfrac{{OD}}{{HD}} = \dfrac{3}{4} \Rightarrow OE = \dfrac{3}{4}SH\), mà \(SH = \sqrt {S{B^2} - B{H^2}}  = \sqrt {{a^2} - {{\left( {\dfrac{{a\sqrt 3 }}{3}} \right)}^2}}  = \dfrac{{a\sqrt 6 }}{3}\)

    Do đó \(OE = \dfrac{3}{4}SH = \dfrac{3}{4}.\dfrac{{a\sqrt 6 }}{3} = \dfrac{{a\sqrt 6 }}{4}\).

    Suy ra \(\dfrac{1}{{O{H^2}}} = \dfrac{1}{{{{\left( {a/2} \right)}^2}}} + \dfrac{1}{{{{\left( {a\sqrt 3 /2} \right)}^2}}} + \dfrac{1}{{{{\left( {a\sqrt 6 /4} \right)}^2}}} = \dfrac{8}{{{a^2}}} \Rightarrow OH = \dfrac{{a\sqrt 2 }}{4}\).

    Tam giác \(OMH\) vuông tại \(H\) có \(OM = \dfrac{1}{2}SB = \dfrac{a}{2},OH = \dfrac{{a\sqrt 2 }}{4} \Rightarrow \sin \widehat {OMH} = \dfrac{{OH}}{{OM}} = \dfrac{{\sqrt 2 }}{2}\).

    Vậy \(\sin \varphi  = \dfrac{{\sqrt 2 }}{2}\).

    Chọn D.

      bởi Kim Xuyen 08/07/2022
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON