YOMEDIA
NONE

Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và B, biết \(AB = BC = a\), \(AD = 2a\) và SA vuông góc với mặt phẳng đáy, \(SA = a\sqrt 2 \). Tính số đo của góc \(\varphi \) là góc giữa hai mặt phẳng (SCD) và (SAD).

A. \(\varphi  = {60^0}\)          

B. \(\varphi  = {45^0}\)

C. \(\varphi  = {30^0}\)          

D. \(\varphi  = {90^0}\) 

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • Góc giữa hai mặt phẳng là góc giữa hai đường thẳng lần lượt vuông góc với giao tuyến.

     

    Gọi E là trung điểm của AD ta có ABCE là hình vuông \( \Rightarrow CE \bot AD\) và \(CE = a\)

    \(\left\{ \begin{array}{l}CE \bot AD\\CE \bot SA\end{array} \right. \Rightarrow CE \bot \left( {SAD} \right)\)\( \Rightarrow CE \bot SD\)

    Kẻ \(EH \bot SD{\mkern 1mu} {\mkern 1mu} \left( {H \in SD} \right)\) ta có \(\left\{ \begin{array}{l}SD \bot EH\\SD \bot CE\end{array} \right. \Rightarrow SD \bot \left( {HCE} \right)\)\( \Rightarrow SD \bot CH\)

    \(\left\{ \begin{array}{l}\left( {SAD} \right) \cap \left( {SCD} \right) = SD\\\left( {SAD} \right) \supset EH \bot CD\\\left( {SCD} \right) \supset CH \bot CD\end{array} \right.\)\( \Rightarrow \widehat {\left( {\left( {SAD} \right);\left( {SCD} \right)} \right)} = \widehat {\left( {EH;CH} \right)}\)

    Ta có:

    \( \Rightarrow HE = \dfrac{{a\sqrt 2 .a}}{{\sqrt {2{a^2} + 4{a^2}} }} = \dfrac{{a\sqrt 3 }}{3}\)

    Xét tam giác SCD có \(CE = AE = ED = a\)\( \Rightarrow CE = \dfrac{1}{2}AD \Rightarrow \Delta ACD\) vuông tại C.

    Có \(\left\{ \begin{array}{l}CD \bot AC\\CD \bot SA\end{array} \right. \Rightarrow CD \bot \left( {SAC} \right)\)\( \Rightarrow CD \bot SC \Rightarrow \Delta SCD\) vuông ở C.

    \( \Rightarrow CH = \dfrac{{SC.CD}}{{\sqrt {S{C^2} + C{D^2}} }}\)\( = \dfrac{{\sqrt {2{a^2} + 2{a^2}} .a\sqrt 2 }}{{\sqrt {2{a^2} + 2{a^2} + 2{a^2}} }} = \dfrac{{2\sqrt 3 a}}{3}\)

    Áp dụng định lí Cosin trong tam giác HCE: \(\cos \angle CHE = \dfrac{{E{H^2} + C{H^2} - C{E^2}}}{{2EH.CH}}\)\( = \dfrac{1}{2} \Rightarrow \angle CHE = {60^0}\)

    Vậy \(\widehat {\left( {\left( {SAD} \right);\left( {SCD} \right)} \right)} = {60^0}\).

    Chọn A.

      bởi Naru to 07/05/2021
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON