YOMEDIA
NONE

Cho hình chóp \(O.\,ABC\) có ba cạnh \(OA,\,OB,\,OC\) đôi một vuông góc và \(OA = OB = OC = a\). Gọi \(M\) là trung điểm cạnh \(AB\). Góc hợp bởi hai véc tơ \(\overrightarrow {BC} \) và \(\overrightarrow {OM} \) bằng

A \(120^0\)

B. \(150^0\)

C. \(135^0\)

D. \(60^0\)

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • Gắn hệ trục tọa độ \(Oxyz\) như hình vẽ với \(A \in Ox;B \in Oy;C \in Oz\) và \(OA = OB = OC = a\)

    Khi đó \(A\left( {a;0;0} \right),B\left( {0;a;0} \right),C\left( {0;0;a} \right) \Rightarrow M\left( {\dfrac{a}{2};\dfrac{a}{2};0} \right)\)

    Ta có \(\overrightarrow {OM}  = \left( {\dfrac{a}{2};\dfrac{a}{2};0} \right) \Rightarrow \left| {\overrightarrow {OM} } \right| = \sqrt {\dfrac{{{a^2}}}{4} + \dfrac{{{a^2}}}{4} + 0}  = \dfrac{{a\sqrt 2 }}{2}\)  và \(\overrightarrow {BC}  = \left( {0; - a;a} \right) \Rightarrow \left| {\overrightarrow {BC} } \right| = \sqrt {{a^2} + {a^2}}  = a\sqrt 2 \)

    Từ đó cos\(\left( {\overrightarrow {BC} ;\overrightarrow {OM} } \right) = \dfrac{{\overrightarrow {BC} .\overrightarrow {OM} }}{{\left| {\overrightarrow {BC} } \right|.\left| {\overrightarrow {OM} } \right|}} = \dfrac{{\dfrac{a}{2}.0 + \dfrac{a}{2}.\left( { - a} \right) + 0.a}}{{a\sqrt 2 .\dfrac{{a\sqrt 2 }}{2}}} = \dfrac{{ - \dfrac{{{a^2}}}{2}}}{{{a^2}}} =  - \dfrac{1}{2}\)

    Nên góc giữa hai véc tơ \(\overrightarrow {BC} ;\overrightarrow {OM} \)  là \(120^\circ .\)

    Chọn A.

      bởi Trong Duy 08/07/2022
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
NONE
ON