YOMEDIA
NONE

Cho hình chóp đều S.ABCD có cạnh đáy bằng \(a\) và cạnh bên tạo với mặt đáy một góc \(60^o\). Hãy tính thể tích của khối chóp S.ABCD ?

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • Gọi O là tâm của hình vuông ABCD \( \Rightarrow SO \bot \left( {ABCD} \right)\)\( \Rightarrow \widehat {\left( {SC;\left( {ABCD} \right)} \right)} = \widehat {\left( {SC;OC} \right)} = \widehat {SCO} = {60^0}\)

    \(ABCD\) là hình vuông cạnh a \( \Rightarrow \left\{ \begin{array}{l}AC = a\sqrt 2  \Rightarrow OC = \dfrac{a}{{\sqrt 2 }}\\{S_{ABCD}} = {a^2}\end{array} \right.\)

    \(\Delta SOC\) vuông tại O \( \Rightarrow SO = OC.\tan \widehat {SCO} = \dfrac{a}{{\sqrt 2 }}.\tan {60^0} = \dfrac{{a\sqrt 3 }}{{\sqrt 2 }}\)

    Thể tích khối chóp S.ABCD là: \(V = \dfrac{1}{3}{S_{ABCD}}.SO = \dfrac{1}{3}.{a^2}.\dfrac{{a\sqrt 3 }}{{\sqrt 2 }} = \dfrac{{{a^3}\sqrt 6 }}{6}\).

      bởi Hong Van 16/05/2022
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON