YOMEDIA
NONE

Cho hai đường thẳng sau \({d_1}:\left\{ \begin{array}{l}x = 1 + t\\y = 2 - t\\z = 3 + 2t\end{array} \right.\) và \({d_2}:\dfrac{{x - 1}}{2} = \dfrac{{y - m}}{1} = \dfrac{{z + 2}}{{ - 1}}\) (với \(m\) là tham số). Hãy tìm \(m\) để hai đường thẳng \({d_1};{d_2}\) cắt nhau.

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • Đường thẳng \({d_1}:\left\{ \begin{array}{l}x = 1 + t\\y = 2 - t\\z = 3 + 2t\end{array} \right.\) có VTCP   \(\overrightarrow {{u_1}}  = \left( {1; - 1;2} \right)\)  và đi qua điểm \({M_1}\left( {1;2;3} \right)\)

    Đường thẳng \({d_2}:\left\{ \begin{array}{l}x = 1 + 2t\\y = m + t\\z =  - 2 - 2t\end{array} \right.\) có VTCP   \(\overrightarrow {{u_2}}  = \left( {2;1; - 1} \right)\)  và đi qua điểm \({M_1}\left( {1;m; - 2} \right)\)

    Khi đó \(\left[ {\overrightarrow {{u_1}} ;\overrightarrow {{u_2}} } \right] = \left( { - 1;5;3} \right)\) và \(\overrightarrow {{M_1}{M_2}}  = \left( {0;m - 2; - 5} \right)\)

    Suy ra \(\left[ {\overrightarrow {{u_1}} ;\overrightarrow {{u_2}} } \right].\overrightarrow {{M_1}{M_2}}  = 0 \Leftrightarrow 5\left( {m - 2} \right) - 15 = 0 \Leftrightarrow 5m = 25 \Leftrightarrow m = 5.\)

      bởi Duy Quang 05/05/2022
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON