YOMEDIA
NONE

Biết diện tích hình phẳng giới hạn bởi các đường thẳng \(y = \left\{ \begin{array}{l} - x{\text{ nếu } }x \le 1\\x - 2{{\text{ nếu } } }x > 1\end{array} \right.\) và \(y = \frac{{10}}{3}x - {x^2}\) là \(\frac{a}{b}\). Khi đó \(a + 2b\) bằng

A.  \(15\)                       B.  \(17\)

C.  \(18\)                       D.  \(16\)

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • Với \(x \le 1\), xét phương trình hoành độ giao điểm: \(\frac{{10}}{3}x - {x^2} =  - x\) \( \Leftrightarrow {x^2} - \frac{{13}}{3}x = 0\) \( \Leftrightarrow \left[ \begin{array}{l}x = 0\left( {tm} \right)\\x = \frac{{13}}{3}\left( {ktm} \right)\end{array} \right.\) 

    Với \(x > 1\) xét phương trình hoành độ giao điểm \(\frac{{10}}{3}x - {x^2} = x - 2\) \({x^2} - \frac{7}{3}x - 2 = 0\) \( \Leftrightarrow \left[ \begin{array}{l}x = 3\left( {tm} \right)\\x =  - \frac{2}{3}\left( {ktm} \right)\end{array} \right.\)

    Diện tích cần tìm là: \(S = \left| {\int\limits_0^1 {\left( {\frac{{10}}{3}x - {x^2} - \left( { - x} \right)} \right)} dx} \right|\) \( + \left| {\int\limits_1^3 {\left( {\frac{{10}}{3}x - {x^2} - \left( {x - 2} \right)} \right)} dx} \right|\)

    \( = \left| {\int\limits_0^1 {\left( {\frac{{13}}{3}x - {x^2}} \right)} dx} \right| + \left| {\int\limits_1^3 {\left( {\frac{7}{3}x - {x^2} + 2} \right)} dx} \right|\)

    \( = \left| {\left. {\left( {\frac{{13}}{6}{x^2} - \frac{{{x^3}}}{3}} \right)} \right|_0^1} \right| + \left| {\left. {\left( {\frac{7}{6}{x^2} - \frac{{{x^3}}}{3} + 2x} \right)} \right|_1^3} \right|\) 

    \( = \frac{{13}}{2}\)

    Nên \(a = 13;b = 2 \Rightarrow a + 2b = 17\)

    Đáp án B

      bởi Anh Thu 10/06/2021
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
NONE
ON