YOMEDIA
NONE

Giải hệ phương trình: \(\left\{\begin{matrix} \sqrt{1+x^2}(1+x-y)+1=y+xy-x^2

Giải hệ phương trình: \(\left\{\begin{matrix} \sqrt{1+x^2}(1+x-y)+1=y+xy-x^2 \ \ \ \ \(1)\\ 2x\sqrt{16y^2-13}-(3+2x)\sqrt{y^2+3x+2}=3-2x \ \ \(2) \end{matrix}\right.\)

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • ĐK: \(16y^2-13\geq 0, y^2+3x+2\geq 0\)

    \(\sqrt{1+x^2}(1+x-y)+1=y+xy-x^2\Leftrightarrow \sqrt{1+x^2}(1+x)-y\sqrt{1+x^2}+1+x^2\)  = y + xy
    \(\Leftrightarrow (\sqrt{1+x^2}-y)(1+x+\sqrt{1+x^2})=0\)
    Vì \(1+x+\sqrt{1+x^2}> 0, \forall x\) nên \(\sqrt{1+x^2}\Leftrightarrow \left\{\begin{matrix} y\geq 0\\ x^2+1=y^2 \end{matrix}\right.\)
    Thay \(y^2=x^2+1\) vào (2) ta có
    \(2x\sqrt{16x+3}-(3+2x)\sqrt{x^2+3x+3}+2x-3=0\)
    hay \(4x\sqrt{16x+3}-2(3+2x)\sqrt{x^2+3x+3}+4x-6=0\)
    \(\Leftrightarrow 4x\sqrt{16x+3} +8x=(3+2x)\sqrt{(2x+3)^2+3}+2(3+2x)\)
    Dạng \(f(u)=f(v)\) với \(f(t)=2t+t\sqrt{t^2+3},u=4x, v=2x+3\)
    Ta có
    \(f'(t)=2+\frac{t}{\sqrt{3+t^2}}+\sqrt{3+t^2}> 0 \ \ \ \forall t,\) f là đồng biến trên
    Do đó \(u=v\)  tức là \(4x=2x+3\Leftrightarrow x=\frac{3}{2}\)  suy ra  \(y=\frac{\sqrt{13}}{2}\)
    Thử lại, ta có nghiệm của hệ là \(x=\frac{3}{2}, y=\frac{\sqrt{13}}{2}\)

      bởi Lê Minh 09/02/2017
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON