-
Câu hỏi:
Trong không gian Oxyz, cho mặt phẳng \(\left( P \right):x - y + 3 = 0\). Véc-tơ nào sau đây không là vecto pháp tuyến của mặt phẳng (P).
- A. \(\overrightarrow a = \left( {3; - 3;0} \right)\)
- B. \(\overrightarrow a = \left( {1; - 2;3} \right)\)
- C. \(\overrightarrow a = \left( { - 1;1;0} \right)\)
- D. \(\overrightarrow a = \left( {1; - 1;0} \right)\)
Đáp án đúng: B
VTPT của mặt phẳng (P) có dạng: \(\overrightarrow n = \left( { - 1;1;0} \right),k \ne 0\)
Suy ra \(\overrightarrow a = \left( {1; - 2;3} \right)\) không là VTPT của (P).
YOMEDIA
Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng
CÂU HỎI KHÁC VỀ PHƯƠNG TRÌNH MẶT PHẲNG
- Viết phương trình mặt phẳng (P) đi qua điểm M(1;2;3) và cắt cấc trục Ox, Oy, Oz lần lượt tại ba điểm A, B, C khác với gốc tọa độ O sao cho biểu thức T=1/OA^2+1/OB^2+1/OC^2 có giá trị nhỏ nhất
- Tìm phương trình của mặt phẳng (P) đi qua A và vuông góc với d biết A(1;2;0) và đường thẳng d:x+1/2=y/1=z−1/−1.
- Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng ({d_1}:frac{{x - 2}}{1} = frac{{y - 1}}{{ - 1}} = frac{z}{2}) và
- Vectơ nào dưới đây là vectơ pháp tuyến của mặt phẳng (P): x/3+y/2+z/1=1.
- Viết phương trình mặt phẳng chứa đường thẳng d và giao tuyến của hai mặt phẳng (P):x+y-z-2=0 và (Q):x+3y-12=0.
- Tìm VTPT mặt phẳng (ABC) biết A(1;0;0), B(0;-2;0), C(0;0;-5
- Tìm m, n để (P) chứ d biết ho đường thẳng x-1/2=y-2/3=z-3/4 và mặt phẳng (P): mx+10y+nz-11=0
- Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng left( P ight):x - 2z + 3 = 0.
- Trong không gian với hệ tọa độ Oxyz, viết phương trình mặt phẳng (P) đi qua điểm Mleft( {3; - 4;7} ight)
- Viết phương trình mặt phẳng (P) đi qua A, B và tạo với đường thẳng Δ góc lớn nhất.