YOMEDIA
NONE
  • Câu hỏi:

    Trong mặt phẳng tọa độ Oxyz, cho mặt phẳng \(\left( \alpha  \right):2x-y-2z-2=0\) và đường thẳng \(\left( d \right):\frac{x}{-1}=\frac{y+1}{2}=\frac{z-2}{1}\). Biết mặt phẳng \(\left( P \right)\) chứa \(\left( d \right)\) và tạo với \(\left( \alpha  \right)\) một góc nhỏ nhất có phương trình dạng ax+by+cz+3=0. Giá trị của T=a.b.c bằng:

    • A. T = 0
    • B. T = 4
    • C. T = -1
    • D. T = -2

    Lời giải tham khảo:

    Đáp án đúng: C

    + \(\left( \alpha\right)\) có một VTCP là \(\overrightarrow{u}=\left( -1;\,2;\,1 \right)\).

    + VTPT của \(\left( P \right)\) có dạng \(\overrightarrow{n}=\left( a;b;c \right)\) với \({{a}^{2}}+{{b}^{2}}+{{c}^{2}}\ne 0\).

    + Vì (P) chứa \(\left( d \right)\) nên \(\overrightarrow{n}.\overrightarrow{u}=0\Leftrightarrow -a+2b+c=0\Leftrightarrow c=a-2b\).

    + Ta có: \(\cos \left( \left( P \right),\left( \alpha\right) \right)=\frac{\left| \overrightarrow{n}.\overrightarrow{{{n}_{\alpha }}} \right|}{\left| \overrightarrow{n} \right|.\left| \overrightarrow{{{n}_{\alpha }}} \right|}=\frac{\left| 2a-b-2c \right|}{3\sqrt{{{a}^{2}}+{{b}^{2}}+{{c}^{2}}}}=\frac{\left| b \right|}{\sqrt{2{{a}^{2}}-4ab+5{{b}^{2}}}}\).

    TH1: Nếu b=0 thì \(\left( \left( P \right),\left( \alpha\right) \right)={{90}^{{}^\circ }}\).

    TH2: Nếu \(b\ne 0\) thì \(\left( \left( P \right),\left( \alpha\right) \right)\) nhỏ nhất khi \(\cos \left( \left( P \right),\left( \alpha\right) \right)=\frac{1}{\sqrt{2{{\left( \frac{a}{b} \right)}^{2}}-4\frac{a}{b}+5}}\) lớn nhất.

    Ta có: \(\cos \left( \left( P \right),\left( \alpha\right) \right)=\frac{1}{\sqrt{2{{\left( \frac{a}{b}-1 \right)}^{2}}+3}}\) lớn nhất khi \(\frac{a}{b}=1\Leftrightarrow a=b\)

    So sánh hai trường hợp ta thấy \(\left( \left( P \right),\left( \alpha\right) \right)\) nhỏ nhất khi a=b nên \(\overrightarrow{n}=\left( a;a;-a \right)\).

    Do đó,

    \(a\left( x-0 \right)+a\left( y+1 \right)-a\left( z-2 \right)=0\Leftrightarrow ax+ay-az+3a=0\).

    Vì mặt phẳng \(\left( P \right)\) có phương trình dạng ax+by+cz+3=0 nên \(a=1\Rightarrow \overrightarrow{n}=\left( 1;1;-1 \right)\)

    Vậy T=-1.

    ATNETWORK

Mã câu hỏi: 265195

Loại bài: Bài tập

Chủ đề :

Môn học: Toán Học

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

 
YOMEDIA

Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng

 

 

CÂU HỎI KHÁC

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON