YOMEDIA
NONE
  • Câu hỏi:

    Cho hai số phức \({{z}_{1}},{{z}_{2}}\). Có bao nhiêu số phức \(z={{z}_{1}}-{{z}_{2}}\) thỏa mãn \(\left| {{z}_{1}} \right|=\left| {{z}_{2}} \right|=2,\,{{z}_{1}}+{{z}_{2}}=2-2i\)?

    • A. 1
    • B. 2
    • C. 3
    • D. Vô số

    Lời giải tham khảo:

    Đáp án đúng: B

    + Gọi M,N,P,Q lần lượt là các điểm biểu diễn của các số phức \({{z}_{1}},{{z}_{2}},{{z}_{1}}+{{z}_{2}},{{z}_{1}}-{{z}_{2}}\).

    Ta có: \(\overrightarrow{OP}=\overrightarrow{OM}+\overrightarrow{ON}\) nên OMPN là hình bình hành mà \(OM=ON=2,\,OP=2\sqrt{2}\), do đó: OMPN là một hình vuông với O,P cố định.

    Vì vậy M,N có hai vị trí \(M\left( 2;0 \right),\,N\left( 0;-2 \right)\) hoặc \(M\left( 0;-2 \right),\,N\left( 2;0 \right)\)

    + Mặt khác: Ta có \(\overrightarrow{OQ}=\overrightarrow{OM}-\overrightarrow{ON}=\overrightarrow{NM}\) nên có hai điểm Q thỏa mãn bài toán.

    Vậy có hai số phức \(z={{z}_{1}}-{{z}_{2}}\)

    ATNETWORK

Mã câu hỏi: 265136

Loại bài: Bài tập

Chủ đề :

Môn học: Toán Học

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

 
YOMEDIA

Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng

 

 

CÂU HỎI KHÁC

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON