-
Câu hỏi:
Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng \(\left( P \right):2x + z - 3 = 0\) và \(\left( Q \right):3x - 2y + 6 = 0\). Gọi \(\Delta\) là giao tuyến của \((P )\) và \((Q )\). Tìm Vectơ chỉ phương của đường thẳng \(\Delta\).
- A. \(\overrightarrow u = \left( {2; - 3;4} \right)\)
- B. \(\overrightarrow u = \left( { - 2; - 3;4} \right)\)
- C. \(\overrightarrow u = \left( {2; - 3; - 4} \right)\)
- D. \(\overrightarrow u = \left( { - 2; - 3; - 4} \right)\)
Lời giải tham khảo:
Đáp án đúng: B
Gọi \(\overrightarrow u\) là VTCP của \(\Delta\)
Mặt phẳng \((P )\) có vectơ pháp tuyến là \(\overrightarrow {{n_1}} = \left( {2;0;1} \right)\) và mặt phẳng \((Q)\) có vectơ pháp tuyến là \(\overrightarrow {{n_2}} = \left( {3; - 2;0} \right)\) \(\Rightarrow \overrightarrow u = k\left[ {\overrightarrow {{n_1}} ,\overrightarrow {{n_2}} } \right] = k\left( { - 2; - 3;4} \right),(k\ne 0)\)
Với \(k=1\) ta có \(\vec u = \left( { - 2; - 3;4} \right).\)
Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài
Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng
CÂU HỎI KHÁC
- Trong không gian với hệ tọa độ Oxyz cho A(1;0;2) B(2;-1;3). Viết phương trình đường thẳng AB.
- Trong không gian với hệ tọa độ Oxyz, cho điểm M(1;3;-4) và hai đường thẳng \({d_1}:\frac{{x - 1}}{1} = \frac{{y - 2}}{3} = \frac{{z - 3}}{1} {d_2}:\frac{{x + 1}}{3} = \frac{{y - 2}}{1} = \frac{{z + 3}}{1} .\) Viết phương trình đường thẳng d đi qua M và vuông góc với cả \(d_1\) và \(d_2\).
- Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng \(\left( P \right):2x + z - 3 = 0\) và \(\left( Q \right):3x - 2y + 6 = 0\). Gọi \(\Delta\) là giao tuyến của \((P )\) và \((Q )\). Tìm Vectơ chỉ phương của đường thẳng \(\Delta\).
- Trong không gian với hệ tọa độ Oxyz, cho \(d:\frac{x}{2} = \frac{y}{4} = \frac{{z + 3}}{1}\) , điểm\(A\left( {3;2;1} \right).\) Viết phương trình đường thẳng \(\Delta\) đi qua A cắt đồng thời vuông góc với đường thẳng d.
- Trong không gian với hệ toạ độ Oxyz, cho tam giác OAB có tọa độ các đỉnh là O(0;0;0), A(4;-2;1), B(2;4;-3). Viết phương trình đường cao kẻ từ đỉnh O của tam giác OAB
- Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng \(d:\frac{{x + 2}}{3} = \frac{{y - 1}}{{ - 2}} = \frac{z}{1}\) và \(d':\left\{ \begin{array}{l} x = - 2 + t\\ y = 2 - t\\ z = 0 \end{array} \right.\). Mệnh đề nào dưới đây là đúng?
- Trong không gian với hệ trục tọa độ Oxyz, cho đường thẳng \(d:\,\frac{{x + 1}}{1} = \frac{y}{{ - 3}} = \frac{{z - 5}}{{ - 1}}\) và mặt phẳng \((P):\,3x - 3y + 2z + 6 = 0\). Mệnh đề nào sau đây đúng?
- Trong không gian với hệ tọa độ Oxyz, tính khoảng cách d từ điểm A(1;-2;3) đến đường thẳng \(\Delta :\frac{{x - 10}}{5} = \frac{{y - 2}}{1} = \frac{{z + 2}}{1}.\)
- Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng \({d_1}:\left\{ \begin{array}{l} x = - 3t\\ y = - 1 + 2t\\ z = - 2 + t \end{array} \right.\) và \({d_2}:\left\{ \begin{array}{l} x = t\\ y = 3 + 4t\\ z = 5 - 5t \end{array} \right..\) Tìm \(\alpha\) là số đo góc giữa hai đường thẳng \(d_1\) và \(d_2\).
- Trong không gian với hệ trục Oxyz, tìm tọa độ hình chiếu vuông góc của điểm \(A(0;1;2)\) trên mặt phẳng \(\left( P \right):x + y + z = 0.\)