YOMEDIA
NONE
  • Câu hỏi:

    Trong không gian với hệ tọa độ \(Oxyz,\) cho ba điểm \(A\left( 0;1;1 \right)\), \(B\left( 3;0;-1 \right)\), \(C\left( 0;21;-19 \right)\) và mặt cầu \(\left( S \right):{{\left( x-1 \right)}^{2}}+{{\left( y-1 \right)}^{2}}+{{\left( z-1 \right)}^{2}}=1\). Gọi điểm \(M\left( a;b;c \right)\) là điểm thuộc mặt cầu \(\left( S \right)\) sao cho biểu thức \(T=3M{{A}^{2}}+2M{{B}^{2}}+M{{C}^{2}}\) đạt giá trị nhỏ nhất. Tính tổng \(S=a+b+c\).

    • A. S = 12
    • B. \(S=\frac{14}{5}\).
    • C. \(S=\frac{12}{5}\).
    • D. S = 0

    Lời giải tham khảo:

    Đáp án đúng: B

    Gọi điểm \(K\left( x;y;z \right)\) sao cho \(3\overrightarrow{KA}+2\overrightarrow{KB}+\overrightarrow{KC}=\overrightarrow{0}\).

    Ta có \(\left\{ \begin{array}{l} \overrightarrow {KA} = \left( { - x;1 - y;1 - z} \right)\\ \overrightarrow {KB} = \left( {3 - x; - y; - 1 - z} \right)\\ \overrightarrow {KC} = \left( { - x;21 - y; - 19 - z} \right) \end{array} \right.\).

    \( \Rightarrow \left\{ \begin{array}{l} - 3x + 2\left( {3 - x} \right) - x = 0\\ 3\left( {1 - y} \right) - 2y + 21 - y = 0\\ 3\left( {1 - z} \right) - 2\left( {1 + z} \right) - 19 - z = 0 \end{array} \right.\)

    \(\Leftrightarrow \left\{ \begin{array}{l} x = 1\\ y = 4\\ z = - 3 \end{array} \right. \Rightarrow K\left( {1;4; - 3} \right)\)

    Khi đó \(\left\{ \begin{array}{l} 3M{A^2} = 3{\left( {\overrightarrow {MK} + \overrightarrow {KA} } \right)^2} = 3M{K^2} + 6\overrightarrow {MK} .\overrightarrow {KA} + 3K{A^2}\\ 2M{B^2} = 2{\left( {\overrightarrow {MK} + \overrightarrow {KB} } \right)^2} = 2M{K^2} + 4\overrightarrow {MK} .\overrightarrow {KB} + 2K{B^2}\\ M{C^2} = {\left( {\overrightarrow {MK} + \overrightarrow {KC} } \right)^2} = M{K^2} + 2\overrightarrow {MK} .\overrightarrow {KC} + 2K{C^2} \end{array} \right.\).

    \(\Rightarrow T=3M{{A}^{2}}+2M{{B}^{2}}+M{{C}^{2}}=5M{{K}^{2}}+2\overrightarrow{MK}\left( 3\overrightarrow{KA}+2\overrightarrow{KB}+\overrightarrow{KC} \right)+\left( 3K{{A}^{2}}+2K{{B}^{2}}+K{{C}^{2}} \right)\)

    \(=5M{{K}^{2}}+\underbrace{\left( 3K{{A}^{2}}+2K{{B}^{2}}+K{{C}^{2}} \right)}_{const}\). Do đó \({{T}_{\min }}\) khi và chỉ khi \(M{{K}_{\min }}\).

    Suy ra \(M=IK\cap \left( S \right)\) và đồng thời M nằm giữa I và K.

    Ta có \(\overrightarrow{IK}=\left( 0;3;-4 \right)\Rightarrow IK:\left\{ \begin{align} & x=1 \\ & y=1+3t \\ & z=1-4t \\ \end{align} \right.\). Suy ra toạ độ điểm M thoả mãn:

    \({{\left( 3t \right)}^{2}}+{{\left( 4t \right)}^{2}}=1\Leftrightarrow t=\pm \frac{1}{5}\). Vì M nằm giữa I và K nên \(t=\frac{1}{5}\) và \(M\left( 1;\frac{8}{5};\frac{1}{5} \right)\)

    Vậy \(S=a+b+c=1+\frac{8}{5}+\frac{1}{5}=\frac{14}{5}\)

    ATNETWORK

Mã câu hỏi: 274715

Loại bài: Bài tập

Chủ đề :

Môn học: Toán Học

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

 
YOMEDIA

Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng

 

 

CÂU HỎI KHÁC

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON