YOMEDIA
NONE
  • Câu hỏi:

    Cho hàm số \(y=f\left( x \right)\). Hàm số \(y={f}'\left( x \right)\) có bảng biến thiên như sau

    Bất phương trình \(f\left( x \right)<m-{{e}^{-x}}\) đúng với mọi \(x\in \left( -2;2 \right)\) khi và chỉ khi

    • A. \(m\ge f\left( 2 \right)+\frac{1}{{{e}^{2}}}\)
    • B. \(m>f\left( -2 \right)+{{e}^{2}}\)
    • C. \(m>f\left( 2 \right)+\frac{1}{{{e}^{2}}}\)
    • D. \(m\ge f\left( -2 \right)+{{e}^{2}}\)

    Lời giải tham khảo:

    Đáp án đúng: D

    Ta có: \(f(x)<m-{{e}^{-x}}\,,\,\forall x\in \left( -2;2 \right)\Leftrightarrow f(x)+{{e}^{-x}}<m\,\text{ }\forall x\in \left( -2;2 \right)\text{ (*)}\).

    Xét hàm số \(g(x)=f(x)+{{e}^{-x}}\)

    Ta có: \({g}'(x)={f}'(x)-{{e}^{-x}}\).

    Ta thấy với \(\forall x\in \left( -2;2 \right)\) thì \({f}'(x)<0\), \(-{{e}^{-x}}<0\) nên \({g}'(x)={f}'(x)-{{e}^{-x}}<0\), \(\forall x\in \left( -2;2 \right)\).

    Bảng biến thiên

    Từ bảng biến thiên ta có \(m\ge g(-2)\Leftrightarrow m\ge f(-2)+{{e}^{2}}\).

    ATNETWORK

Mã câu hỏi: 274704

Loại bài: Bài tập

Chủ đề :

Môn học: Toán Học

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

 
YOMEDIA

Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng

 

 

CÂU HỎI KHÁC

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON