YOMEDIA
NONE
  • Câu hỏi:

    Trong hệ tọa độ \(Oxyz\), cho hai đường thẳng chéo nhau \({d_1}:\dfrac{{x - 2}}{2} = \dfrac{{y + 2}}{1} = \dfrac{{z - 6}}{{ - 2}}\)  và \({d_2}:\dfrac{{x - 4}}{1} = \dfrac{{y + 2}}{{ - 2}} = \dfrac{{z + 1}}{3}\) . Phương trình mặt phẳng \(\left( P \right)\) chứa \({d_1}\) và song song với \({d_2}\) là: 

    • A. \(\left( P \right):x + 8y + 5z + 16 = 0\)   
    • B. \(\left( P \right):x + 8y + 5z - 16 = 0\) 
    • C. \(\left( P \right):2x + y - 6 = 0\) 
    • D. \(\left( P \right):x + 4y + 3z - 12 = 0\) 

    Lời giải tham khảo:

    Đáp án đúng: B

    Đường thẳng \({d_1}:\dfrac{{x - 2}}{2} = \dfrac{{y + 2}}{1} = \dfrac{{x - 6}}{{ - 2}}\) đi qua \(M\left( {2; - 2;6} \right)\) và có VTCP \(\overrightarrow {{u_1}}  = \left( {2;1; - 2} \right)\)

    Đường thẳng \({d_2}:\dfrac{{x - 4}}{1} = \dfrac{{y + 2}}{{ - 2}} = \dfrac{{z + 1}}{3}\) có VTCP \(\overrightarrow {{u_2}}  = \left( {1; - 2;3} \right)\)

    Vì mặt phẳng \(\left( P \right)\) chứa \({d_1}\) và song song với \({d_2}\) nên 1 VTPT của mặt phẳng \(\left( P \right)\) là \(\overrightarrow n  = \left[ {\overrightarrow {{u_1}} ;\overrightarrow {{u_2}} } \right] = \left( { - 1; - 8; - 5} \right)\)

    Phương trình mặt phẳng \(\left( P \right): - 1\left( {x - 2} \right) - 8\left( {y + 2} \right) - 5\left( {z - 6} \right) = 0\) \( \Leftrightarrow x + 8y + 5 - 16 = 0\)

    Chọn B.

    ATNETWORK

Mã câu hỏi: 358138

Loại bài: Bài tập

Chủ đề :

Môn học: Toán Học

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

 
YOMEDIA

Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng

 

 

CÂU HỎI KHÁC

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON