YOMEDIA
NONE
  • Câu hỏi:

    Hai người \(A\) và \(B\) ở cách nhau \(180m\) trên một đoạn đường thẳng và cùng chuyển động thẳng theo một hướng với vận tốc biến thiên theo thời gian, A chuyển động với vận tốc \({v_1}\left( t \right) = 6t + 5\left( {m/s} \right)\), B chuyển dộng với vận tốc \({v_2}\left( t \right) = 2at - 3\left( {m/s} \right)\) (\(a\) là hằng số), trong đó \(t\) (giây) là khoảng thời gian tính từ lúc A,B bắt đầu chuyển động. Biết rằng lúc đầu A đuổi theo B và sau \(10\) (giây) thì đuổi kịp. Hỏi sau \(20\) giây, A cách B bao nhiêu mét?

    • A. \(320\left( m \right)\) 
    • B. \(720\left( m \right)\) 
    • C. \(360\left( m \right)\) 
    • D. \(380\left( m \right)\) 

    Lời giải tham khảo:

    Đáp án đúng: D

    Quãng đường người A đi được trong 10 giây kể từ khi bắt đầu chuyển động là \(\int\limits_0^{10} {\left( {6t + 5} \right)dt}  = 350m\)

    Quãng đường người B đi được trong 10 giây kể từ khi bắt đầu chuyển động là \(\int\limits_0^{10} {\left( {2at - 3} \right)dt}  = \left. {\left( {a.{t^2} - 3t} \right)} \right|_0^{10} = 100a - 30\)

    Vì sau 10 giây người A đuổi kịp người B và người A lú ban đầu cách người B là 180m nên ta có phương trình \(100a - 30 + 180 = 350 \Leftrightarrow a = 2\) suy ra \({v_2}\left( t \right) = 4t - 3\left( {m/s} \right)\)

    Quãng đường người A đi được trong 20 giây kể từ khi bắt đầu chuyển động là \(\int\limits_0^{20} {\left( {6t + 5} \right)dt}  = 1300m\)

    Quãng đường người B đi được trong 20 giây kể từ khi bắt đầu chuyển động là \(\int\limits_0^{20} {\left( {4t - 3} \right)dt}  = 740m\)

    Khoảng cách giữa hai người A và người B sau 20 giây là \(1300 - 180 - 740 = 380\left( m \right)\)

    Chọn D.

    ATNETWORK

Mã câu hỏi: 358213

Loại bài: Bài tập

Chủ đề :

Môn học: Toán Học

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

 
YOMEDIA

Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng

 

 

CÂU HỎI KHÁC

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON