-
Câu hỏi:
Cho hình chóp S.ABCD có đáy là hình vuông cạnh bằng a, SA vuông góc với đáy, \(SA = a\sqrt 2\). Tính thể tích V của khối cầu ngoại tiếp hình chóp S.ABCD.
- A. \(V = \frac{{32}}{3}\pi {a^3}\).
- B. \(V = \frac{{4}}{3}\pi {a^3}\).
- C. \(V =4\pi {a^3}\).
- D. \(V = \frac{{4\sqrt 2 }}{3}\pi {a^3}\).
Đáp án đúng: B
Dễ thấy SAC, SAC, SDC là các tam giác vuông nhận SC làm cạnh huyền, nên tâm mặt cầu ngoại tiếp khối chóp S.ABCD là trung điểm của SC.
Bán kính khối cầu ngoại tiếp hình chóp SABCD là: \(R = \frac{{SC}}{2} = \frac{{\sqrt {S{A^2} + A{C^2}} }}{2} = a.\)
Thể tích khối cầu \(V = \frac{4}{3}\pi {R^3} = \frac{4}{3}\pi {a^3}\).
YOMEDIA
Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng
CÂU HỎI KHÁC VỀ MẶT CẦU, DIỆN TÍCH MẶT CẦU, THỂ TÍCH KHỐI CẦU
- Tính diện tích mặt cầu ngoại tiếp hình chóp S.ABC có đáy là tam giác đều cạnh bằng 1, SA vuông góc với đáy, góc giữa mặt bên (SBC) và đáy bằng 60 độ
- Tính diện tích mặt cầu ngoại tiếp hình chóp S.ABCD có đáy là hình chữ nhật, AB=2a, BC=a, hình chiếu của S lên (ABCD) là trung điểm H của AD
- Tính bán kính R của mặt cầu ngoại tiếp hình chóp đều S.ABC có cạnh đáy bằng a, góc tạo bởi cạnh bên và đáy bằng 60 độ
- Tính thể tích V của khối lập phương biết hình cầu có thể tích {8sqrt 2pi }/{3} nội tiếp trong một hình lập phương.
- Tính thể tích của khối cầu ngoại tiếp một khối lập phương có cạnh bằng a
- Tính diện tích S của mặt cầu đi qua các đỉnh của hình lập phương có cạnh bằng 1
- Một xưởng sản xuất muốn tạo ra những chiếc đồng hồ cát bằng thủy tinh có dạng hình trụ, phần chứa cát là hai nửa hình cầu bằng nhau.
- Tính bán kính R của mặt cầu ngoại tiếp tứ diện AB’C’C biết lăng trụ đứng ABC.A’B’C’ có AB = AC = a,BC = asqrt 3. Cạnh bên AA’=2a.
- Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh 2 căn 2 cạnh bên SA vuông góc với mặt phẳng đáy và SA = 3 mặt phẳng (alpha ) qua A và vuông góc với SC cắt các cạnh SB, SC, SD lần lượt tại các điểm M,N,P
- Tính bán kính R của mặt cầu ngoại tiếp hình chóp S.ABC biết hình chóp S.ABCD có đáy ABCD là hình thoi cạnh a, góc ABC=120 độ