-
Câu hỏi:
Cho tam giác ABC vuông tại A có AB=6, AC=8. Tính diện tích xung quanh của hình nón tròn xoay tạo thành khi quay tam giác ABC quanh cạnh AC.
- A. \({S_{xq}} = 160\pi.\)
- B. \({S_{xq}} = 80\pi.\)
- C. \({S_{xq}} =120\pi.\)
- D. \({S_{xq}} =60\pi.\)
Đáp án đúng: D
Hình nón có đường sinh \(\l = BC = \sqrt {A{B^2} + A{C^2}} = 10,\) bán kính đáy R=AB=6.
Vậy \({S_{xq}} = \pi .6.10 = 60\pi \left( {dvdt} \right)\)
YOMEDIA
Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng
CÂU HỎI KHÁC VỀ MẶT NÓN, HÌNH NÓN, KHỐI NÓN
- Trong các hình nón nội tiếp một hình cầu có bán kính bằng 3, tính bán kính mặt đáy của hình nón có thể tích lớn nhất
- Tính diện tích xung quanh S của hình nón có độ dài đường sinh bằng 2 cm, góc ở đỉnh bằng 60 độ
- Một hình nón có tỉ lệ giữa đường sinh và bán kính đáy bằng 2. Tìm số đo góc ở đỉnh của hình nón
- Tính thể tích khối nón có độ dài đường sinh l=2a và góc ở đinh 60 độ
- Cho khối nón đỉnh O, trục OI. Mặt phẳng trung trực OI chia khối nón thành hai phần. Tính tỉ số thể tích của hai phần
- Cho đoạn thẳng AB có độ dài bằng 2a, vẽ tia Ax về phía điểm B sao cho điểm B luôn cách tia Ax một đoạn bằng a. Gọi H là hình chiếu của B lên tia Ax, khi tam giác AHB quay quanh trục AB thì đường gấp khúc AHB
- Một hình nón có thiết diện qua trục là tam giác đều cạnh a. Tính bán kính R của mặt cầu ngoại tiếp hình nón theo a
- Cho hình lập phương ABCD.A’B’C’D’ có cạnh b. Tính diện tích xung quanh S của hình nón tròn xoay được sinh ra bởi đường gấp khúc AC’A’ quay xung quang trục AA’
- Tính diện tích xung quanh S của hình nón có chiều cao 10sqrt 3 cm góc giữa một đường sinh với mặt đáy bằng 60 độ
- Cho hình thang vuông ABCD (vuông tại A và D) có độ dài các cạnh là AD=a, AB=5a, CD=2a. Tính thể tích V của vật thể tròn xoay khi quay quanh hình thang trên quanh trục AB