YOMEDIA
NONE
  • Câu hỏi:

    Trong không gian với hệ tọa độ Oxyz, cho \(A(2;0;0),\,B(0;2;0),\,C(0;0;2),\,D(2;2;2)\). Tìm bán kính mặt cầu ngoại tiếp tứ diện ABCD.

    • A. \(R = 3\)
    • B. \(R = \sqrt 3\)
    • C. \(R = \frac{{\sqrt 3 }}{2}\)
    • D. \(R = \frac{{\sqrt 2 }}{3}\)

    Đáp án đúng: B

    Giả sử phương trình mặt cầu có dạng: \((S):{x^2} + {y^2} + {z^2} - 2ax - 2by - 2cz + d = 0\)(*) với \({a^2} + {b^2} + {c^2} - d > 0\).

    Thay \(A(2;0;0),\,B(0;2;0),\,C(0;0;2),\,D(2;2;2)\) vào (*) ta được:

    \(\begin{array}{l} \left\{ \begin{array}{l} - 4a + d = - 4\\ - 4b + d = - 4\\ - 4c + d = - 4\\ - 4a - 4b - 4c + d = - 12 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} a = - 1\\ b = - 1\\ c = - 1\\ d = 0 \end{array} \right.\\ \Rightarrow \left( S \right):\,{x^2} + {y^2} + {z^2} - 2x - 2y - 2z = 0 \end{array}\)

    Vậy: \(R = \sqrt {{a^2} + {b^2} + {c^2} - d} = \sqrt 3\)  

    YOMEDIA
YOMEDIA

Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng

 

 

CÂU HỎI KHÁC VỀ PHƯƠNG TRÌNH MẶT CẦU VÀ CÁC DẠNG TOÁN LIÊN QUAN

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON