-
Câu hỏi:
Rút gọn biểu thức \(P = ({\log _a}b + {\log _b}a + 2)({\log _a}b - {\log _{ab}}b).{\log _b}a - 1.\)
- A. \(P = {\log _b}a\)
- B. \(P =1\)
- C. \(P =0\)
- D. \(P = {\log _a}b\)
Đáp án đúng: D
\(\begin{array}{l} ({\log _a}b + {\log _b}a + 2)\left( {{{\log }_a}b - {{\log }_{ab}}b} \right){\log _b}a - 1\\ = ({\log _a}b + {\log _b}a + 2)\left( {{{\log }_a}b - \frac{{{{\log }_a}b}}{{{{\log }_a}(ab)}}} \right){\log _b}a - 1\\ = ({\log _a}b + \frac{1}{{{{\log }_a}b}} + 2)\left( {1 - \frac{1}{{1 + {{\log }_a}b}}} \right) - 1 \end{array}\)
Đặt \(t = {\log _a}b\)
\(\Rightarrow \left( {1 + \frac{1}{t} + 2} \right)\left( {1 - \frac{1}{{1 + t}}} \right) - 1 = \frac{{{t^2} + 2t + 1}}{t}.\frac{t}{{t + 1}} - 1 = t = {\log _a}b\)
YOMEDIA
Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng
CÂU HỎI KHÁC VỀ LOGARIT VÀ HÀM SỐ LOGARIT
- Tính đạo hàm của hàm số y=ln((2x-1)/(x+1))
- Tìm kết quả đúng biết a^2+4b^2=12ab
- Rút gọn biểu thức P = {log _a}sqrt[3]{{sqrt a }}
- Tính đạo hàm của hàm số y=ln(1-sqrt(x-1))
- A = {log _{sqrt 2 }}sqrt 6 + {log _4}81 - {log _2}27 + {81^{frac{1}{{{{log }_5}3}}}}
- Biểu diễn {log_3}50 theo {log_3}15=a {log_3}10=b
- Q = {log _a}left( {asqrt b } ight) - {log _{sqrt a }}left( {asqrt[4]{b}} ight) + {log _{sqrt[3]{b}}}b
- {log _a}x < {log _a}y x > y > 0
- Tính đạo hàm của hàm số y=log(x^2+x+1)
- Biểu diễn {log_60}1050 theo a = {log _2}3,b = {log _2}5,c = {log _2}7