YOMEDIA
NONE
  • Câu hỏi:

    Một người muốn làm cho con gái 1 chiếc lều từ vải và các ống nhựa PVC có dạng hình chóp tứ giác đều như hình vẽ.

    Biết rằng nếu em bé đi dọc theo 1 cạnh của chiếc lều với vận tốc \(0,3\,\text{m/s}\) thì phải mất \(6\,\text{s}\), và góc giữa mỗi ống nhựa với mặt sàn nhà là \(60{}^\circ \). Hỏi người đó cần dùng hết ít nhất bao nhiêu mét vuông vải để may chiếc lều trên? (Chỉ dùng vải để may các mặt bên của chiếc lều)

    • A. \(9\,{{\rm{m}}^2}\)
    • B. \(8,5{\rm{ }}{{\rm{m}}^2}\)
    • C. \(8,6{\rm{ }}{{\rm{m}}^2}\)
    • D. \(9,2{\rm{ }}{{\rm{m}}^2}\)

    Lời giải tham khảo:

    Đáp án đúng: C

    Giả sử chiếc lều có dạng hình chóp đều S.ABCD như hình vẽ trên.

    Ta có em bé đi dọc theo 1 cạnh của chiếc lều với vận tốc \(0,3\,\text{m/s}\) thì phải mất \(6\,\text{s}\), nên độ dài 1 cạnh đáy của chiếc lều là \(AB=0,3.6=1,8\,\text{m}\).

    Gọi M là trung điểm của AB.

    Ta có \(SB=\frac{OB}{\cos 60{}^\circ }=2OB=AB\sqrt{2} \Rightarrow SM=\sqrt{S{{B}^{2}}-B{{M}^{2}}}=\sqrt{2A{{B}^{2}}-\frac{A{{B}^{2}}}{4}}=\frac{\sqrt{7}}{2}AB\).

    Khi đó diện tích vải cần dùng để may các mặt xung quanh chiếc lếu là:

    \(S=4{{S}_{\Delta SAB}}=4.\frac{1}{2}.SM.AB= =1.\frac{1}{2}.\frac{\sqrt{7}}{2}AB.AB=\sqrt{7}.A{{B}^{2}} =\sqrt{7}.1,{{8}^{2}}\approx 8,6\,{{\text{m}}^{2}}\).

    ATNETWORK

Mã câu hỏi: 261130

Loại bài: Bài tập

Chủ đề :

Môn học: Toán Học

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

 
YOMEDIA

Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng

 

 

CÂU HỎI KHÁC

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON